1,702 research outputs found
Modellling visual product quality in cut chrysanthemum
Throughout the year, cut chrysanthemum growers aim at a constant product quality by varying plant density, duration of the long-day (LD) period and, more recently, by the use of supplementary assimilation light during periods of poor natural light conditions. Visual quality of cut chrysanthemum is mainly determined by plant mass (in relation to stem length), number of flowers per plant and flower size. For production in agreement with market demands at the lowest costs, models can be of great interest. We developed and validated an explanatory photosynthesis-driven crop growth model, that can predict influence of planting date, plant density, CO2 concentration and supplementary assimilation light on visual quality of cut chrysanthemum. The model is presented and some validation results are given. It is shown how the model can be used to define acceptable plant densities throughout the year at different levels of assimilation light intensities or glasshouse light transmissivities. Also the trade-off between duration of the LD period and plant density, when aiming at a certain plant mass, is quantified using the model
Sudden Death of Entanglement: Classical Noise Effects
When a composite quantum state interacts with its surroundings, both quantum
coherence of individual particles and quantum entanglement will decay. We have
shown that under vacuum noise, i.e., during spontaneous emission, two-qubit
entanglement may terminate abruptly in a finite time [T. Yu and J. H. Eberly,
\prl {93}, 140404 (2004)], a phenomenon termed entanglement sudden death (ESD).
An open issue is the behavior of mixed-state entanglement under the influence
of classical noise. In this paper we investigate entanglement sudden death as
it arises from the influence of classical phase noise on two qubits that are
initially entangled but have no further mutual interaction.Comment: 5 pages, 1 figur
Chaotic Diffusion on Periodic Orbits: The Perturbed Arnol'd Cat Map
Chaotic diffusion on periodic orbits (POs) is studied for the perturbed
Arnol'd cat map on a cylinder, in a range of perturbation parameters
corresponding to an extended structural-stability regime of the system on the
torus. The diffusion coefficient is calculated using the following PO formulas:
(a) The curvature expansion of the Ruelle zeta function. (b) The average of the
PO winding-number squared, , weighted by a stability factor. (c) The
uniform (nonweighted) average of . The results from formulas (a) and (b)
agree very well with those obtained by standard methods, for all the
perturbation parameters considered. Formula (c) gives reasonably accurate
results for sufficiently small parameters corresponding also to cases of a
considerably nonuniform hyperbolicity. This is due to {\em uniformity sum
rules} satisfied by the PO Lyapunov eigenvalues at {\em fixed} . These sum
rules follow from general arguments and are supported by much numerical
evidence.Comment: 6 Tables, 2 Figures (postscript); To appear in Physical Review
Cosmic Chronometers: Constraining the Equation of State of Dark Energy. I: H(z) Measurements
We present new determinations of the cosmic expansion history from
red-envelope galaxies. We have obtained for this purpose high-quality spectra
with the Keck-LRIS spectrograph of red-envelope galaxies in 24 galaxy clusters
in the redshift range 0.2 < z < 1.0. We complement these Keck spectra with
high-quality, publicly available archival spectra from the SPICES and VVDS
surveys. We improve over our previous expansion history measurements in Simon
et al. (2005) by providing two new determinations of the expansion history:
H(z) = 97 +- 62 km/sec/Mpc at z = 0.5 and H(z) = 90 +- 40 km/sec/Mpc at z =
0.8. We discuss the uncertainty in the expansion history determination that
arises from uncertainties in the synthetic stellar-population models. We then
use these new measurements in concert with cosmic-microwave-background (CMB)
measurements to constrain cosmological parameters, with a special emphasis on
dark-energy parameters and constraints to the curvature. In particular, we
demonstrate the usefulness of direct H(z) measurements by constraining the
dark- energy equation of state parameterized by w0 and wa and allowing for
arbitrary curvature. Further, we also constrain, using only CMB and H(z) data,
the number of relativistic degrees of freedom to be 4 +- 0.5 and their total
mass to be < 0.2 eV, both at 1-sigma.Comment: Submitted to JCA
Challenges in Complex Systems Science
FuturICT foundations are social science, complex systems science, and ICT.
The main concerns and challenges in the science of complex systems in the
context of FuturICT are laid out in this paper with special emphasis on the
Complex Systems route to Social Sciences. This include complex systems having:
many heterogeneous interacting parts; multiple scales; complicated transition
laws; unexpected or unpredicted emergence; sensitive dependence on initial
conditions; path-dependent dynamics; networked hierarchical connectivities;
interaction of autonomous agents; self-organisation; non-equilibrium dynamics;
combinatorial explosion; adaptivity to changing environments; co-evolving
subsystems; ill-defined boundaries; and multilevel dynamics. In this context,
science is seen as the process of abstracting the dynamics of systems from
data. This presents many challenges including: data gathering by large-scale
experiment, participatory sensing and social computation, managing huge
distributed dynamic and heterogeneous databases; moving from data to dynamical
models, going beyond correlations to cause-effect relationships, understanding
the relationship between simple and comprehensive models with appropriate
choices of variables, ensemble modeling and data assimilation, modeling systems
of systems of systems with many levels between micro and macro; and formulating
new approaches to prediction, forecasting, and risk, especially in systems that
can reflect on and change their behaviour in response to predictions, and
systems whose apparently predictable behaviour is disrupted by apparently
unpredictable rare or extreme events. These challenges are part of the FuturICT
agenda
Controversies and priorities in amyotrophic lateral sclerosis
Two decades after the discovery that 20% of familial amyotrophic lateral sclerosis (ALS) cases were linked to mutations in the superoxide dismutase-1 (SOD1) gene, a substantial proportion of the remainder of cases of familial ALS have now been traced to an expansion of the intronic hexanucleotide repeat sequence in C9orf72. This breakthrough provides an opportunity to re-evaluate longstanding concepts regarding the cause and natural history of ALS, coming soon after the pathological unification of ALS with frontotemporal dementia through a shared pathological signature of cytoplasmic inclusions of the ubiquitinated protein TDP-43. However, with profound clinical, prognostic, neuropathological, and now genetic heterogeneity, the concept of ALS as one disease appears increasingly untenable. This background calls for the development of a more sophisticated taxonomy, and an appreciation of ALS as the breakdown of a wider network rather than a discrete vulnerable population of specialised motor neurons. Identification of C9orf72 repeat expansions in patients without a family history of ALS challenges the traditional division between familial and sporadic disease. By contrast, the 90% of apparently sporadic cases and incomplete penetrance of several genes linked to familial cases suggest that at least some forms of ALS arise from the interplay of multiple genes, poorly understood developmental, environmental, and age-related factors, as well as stochastic events
International Pediatric Otolaryngology Group (IPOG) consensus recommendations: Hearing loss in the pediatric patient
Objective To provide recommendations for the workup of hearing loss in the pediatric patient. Methods Expert opinion by the members of the International Pediatric Otolaryngology Group. Results Consensus recommendations include initial screening and diagnosis as well as the workup of sensorineural, conductive and mixed hearing loss in children. The consensus statement discusses the role of genetic testing and imaging and provides algorithms to guide the workup of children with hearing loss. Conclusion The workup of children with hearing loss can be guided by the recommendations provided herein
- …