766 research outputs found

    TEORIAS DE ENFERMAGEM: IMPORTÂNCIA DA CORRETA APLICAÇÃO DOS CONCEITOS

    Get PDF
    Theoretical-reflexive research, whose aim is to analyze the clarity of concept stimulus in the Roy Model, for best comprehension in nursing practice. It was developed in three phases: 1- Search of studies that utilized the Roy Model; 2- Conducted reading for comprehension of the concept stimulus and 3- Analysis of clarity of the concept. The three studies were conducted at master level. The analysis of the studies shows deficiency in the clarity of the concept stimulus, being predominant the ambiguity in the classification and differentiation of the focal and contextual stimuli, without the existence of consistency and uniformity. The need arises to deepen the theories of nursing for adequate application in the areas of research: nursing education and practice, optimizing and improving its use, as well as, enabling the comprehension of determined concepts that are not sufficiently clear. The worries that arise among the nurses will provide a more profound approach to the study, enabling the advance of theories, as well as new findings, leading to necessary changes.  Investigación teórico-reflexiva cuyo objetivo fue analizar la claridad del concepto estímulo según el  modelo de Roy, para mayor comprensión en la práctica de enfermería. Desarrollada en tres etapas: 1ª- Levantamiento de estudios que utilizaron el Modelo de Roy; 2ª - Lectura dirigida hacia la comprensión del concepto estímulo y 3ª - Análisis de la claridad del concepto. Fueron utilizados tres estudios, a  nivel de maestrado. El análisis de los estudios demuestra deficiencia en la claridad del concepto estímulo, predominando ambigüedad en la clasificación y diferenciación de los estímulos focales y contextuales, sin consistencia y uniformidad. Se evidencia la necesidad de profundizar en las teorías de enfermería, para su aplicación adecuada en las áreas de investigación, enseñanza y práctica, optimizando y mejorando su uso, además de posibilitar la comprensión de determinados conceptos no suficientemente claros. Las inquietudes surgidas entre los enfermeros podrán motivar un abordaje más profundo de los estudios, posibilitando el avance de las teorías, así  como nuevos descubrimientos, dirigiendo los cambios necesariosPesquisa teórico-reflexiva, objetivando analisar a clareza do conceito estímulo no modelo de Roy, para maior compreensão na prática de enfermagem. Desenvolvido em três etapas: 1ª- Levantamento de estudos que utilizaram o Modelo de Roy; 2ª - Leitura dirigida para a compreensão do conceito estímulo e 3ª - Análise da clareza do conceito. Foram utilizados três estudos, em nível de mestrado. A análise dos estudos demonstra deficiência na clareza do conceito estímulo, predominando ambigüidade na classificação e diferenciação dos estímulos focais e contextuais, não existindo consistência e uniformidade. Evidencia-se a necessidade do aprofundamento nas teorias de enfermagem, para a aplicação adequada nas áreas de pesquisa, ensino e prática, otimizando e aprimorando seu uso, além de possibilitar a compreensão de determinados conceitos, não suficientemente claros. As inquietações surgidas entre os enfermeiros poderão proporcionar o aprofundamento nos estudos, possibilitando o avanço das teorias, assim como novos achados, direcionando as mudanças necessárias

    Expression and trans-specific polymorphism of self-incompatibility RNases in Coffea (Rubiaceae)

    Get PDF
    Self-incompatibility (SI) is widespread in the angiosperms, but identifying the biochemical components of SI mechanisms has proven to be difficult in most lineages. Coffea (coffee; Rubiaceae) is a genus of old-world tropical understory trees in which the vast majority of diploid species utilize a mechanism of gametophytic self-incompatibility (GSI). The S-RNase GSI system was one of the first SI mechanisms to be biochemically characterized, and likely represents the ancestral Eudicot condition as evidenced by its functional characterization in both asterid (Solanaceae, Plantaginaceae) and rosid (Rosaceae) lineages. The S-RNase GSI mechanism employs the activity of class III RNase T2 proteins to terminate the growth of "self" pollen tubes. Here, we investigate the mechanism of Coffea GSI and specifically examine the potential for homology to S-RNase GSI by sequencing class III RNase T2 genes in populations of 14 African and Madagascan Coffea species and the closely related self-compatible species Psilanthus ebracteolatus. Phylogenetic analyses of these sequences aligned to a diverse sample of plant RNase T2 genes show that the Coffea genome contains at least three class III RNase T2 genes. Patterns of tissue-specific gene expression identify one of these RNase T2 genes as the putative Coffea S-RNase gene. We show that populations of SI Coffea are remarkably polymorphic for putative S-RNase alleles, and exhibit a persistent pattern of trans-specific polymorphism characteristic of all S-RNase genes previously isolated from GSI Eudicot lineages. We thus conclude that Coffea GSI is most likely homologous to the classic Eudicot S-RNase system, which was retained since the divergence of the Rubiaceae lineage from an ancient SI Eudicot ancestor, nearly 90 million years ago.United States National Science Foundation [0849186]; Society of Systematic Biologists; American Society of Plant Taxonomists; Duke University Graduate Schoolinfo:eu-repo/semantics/publishedVersio

    Standardizing Clinical Trials Workflow Representation in UML for International Site Comparison

    Get PDF
    BACKGROUND: With the globalization of clinical trials, a growing emphasis has been placed on the standardization of the workflow in order to ensure the reproducibility and reliability of the overall trial. Despite the importance of workflow evaluation, to our knowledge no previous studies have attempted to adapt existing modeling languages to standardize the representation of clinical trials. Unified Modeling Language (UML) is a computational language that can be used to model operational workflow, and a UML profile can be developed to standardize UML models within a given domain. This paper's objective is to develop a UML profile to extend the UML Activity Diagram schema into the clinical trials domain, defining a standard representation for clinical trial workflow diagrams in UML. METHODS: Two Brazilian clinical trial sites in rheumatology and oncology were examined to model their workflow and collect time-motion data. UML modeling was conducted in Eclipse, and a UML profile was developed to incorporate information used in discrete event simulation software. RESULTS: Ethnographic observation revealed bottlenecks in workflow: these included tasks requiring full commitment of CRCs, transferring notes from paper to computers, deviations from standard operating procedures, and conflicts between different IT systems. Time-motion analysis revealed that nurses' activities took up the most time in the workflow and contained a high frequency of shorter duration activities. Administrative assistants performed more activities near the beginning and end of the workflow. Overall, clinical trial tasks had a greater frequency than clinic routines or other general activities. CONCLUSIONS: This paper describes a method for modeling clinical trial workflow in UML and standardizing these workflow diagrams through a UML profile. In the increasingly global environment of clinical trials, the standardization of workflow modeling is a necessary precursor to conducting a comparative analysis of international clinical trials workflows

    Algorithms to predict cerebral malaria in murine models using the SHIRPA protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium berghei </it>ANKA infection in C57Bl/6 mice induces cerebral malaria (CM), which reproduces, to a large extent, the pathological features of human CM. However, experimental CM incidence is variable (50-100%) and the period of incidence may present a range as wide as 6-12 days post-infection. The poor predictability of which and when infected mice will develop CM can make it difficult to determine the causal relationship of early pathological changes and outcome. With the purpose of contributing to solving these problems, algorithms for CM prediction were built.</p> <p>Methods</p> <p>Seventy-eight <it>P. berghei</it>-infected mice were daily evaluated using the primary SHIRPA protocol. Mice were classified as CM+ or CM- according to development of neurological signs on days 6-12 post-infection. Logistic regression was used to build predictive models for CM based on the results of SHIRPA tests and parasitaemia.</p> <p>Results</p> <p>The overall CM incidence was 54% occurring on days 6-10. Some algorithms had a very good performance in predicting CM, with the area under the receiver operator characteristic (<sub>au</sub>ROC) curve ≥ 80% and positive predictive values (PV+) ≥ 95, and correctly predicted time of death due to CM between 24 and 72 hours before development of the neurological syndrome (<sub>au</sub>ROC = 77-93%; PV+ = 100% using high cut off values). Inclusion of parasitaemia data slightly improved algorithm performance.</p> <p>Conclusion</p> <p>These algorithms work with data from a simple, inexpensive, reproducible and fast protocol. Most importantly, they can predict CM development very early, estimate time of death, and might be a valuable tool for research using CM murine models.</p

    A Generalized Linear Model for Estimating Spectrotemporal Receptive Fields from Responses to Natural Sounds

    Get PDF
    In the auditory system, the stimulus-response properties of single neurons are often described in terms of the spectrotemporal receptive field (STRF), a linear kernel relating the spectrogram of the sound stimulus to the instantaneous firing rate of the neuron. Several algorithms have been used to estimate STRFs from responses to natural stimuli; these algorithms differ in their functional models, cost functions, and regularization methods. Here, we characterize the stimulus-response function of auditory neurons using a generalized linear model (GLM). In this model, each cell's input is described by: 1) a stimulus filter (STRF); and 2) a post-spike filter, which captures dependencies on the neuron's spiking history. The output of the model is given by a series of spike trains rather than instantaneous firing rate, allowing the prediction of spike train responses to novel stimuli. We fit the model by maximum penalized likelihood to the spiking activity of zebra finch auditory midbrain neurons in response to conspecific vocalizations (songs) and modulation limited (ml) noise. We compare this model to normalized reverse correlation (NRC), the traditional method for STRF estimation, in terms of predictive power and the basic tuning properties of the estimated STRFs. We find that a GLM with a sparse prior predicts novel responses to both stimulus classes significantly better than NRC. Importantly, we find that STRFs from the two models derived from the same responses can differ substantially and that GLM STRFs are more consistent between stimulus classes than NRC STRFs. These results suggest that a GLM with a sparse prior provides a more accurate characterization of spectrotemporal tuning than does the NRC method when responses to complex sounds are studied in these neurons

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore