30 research outputs found

    IFNγ protects motor neurons from oxidative stress via enhanced global protein synthesis in FUS-associated amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis type 6 (ALS6) is a familial subtype of ALS linked to Fused in Sarcoma (FUS) gene mutation. FUS mutations lead to decreased global protein synthesis, but the mechanism that drives this has not been established. Here, we used ALS6 patient-derived induced pluripotent stem cells (hIPSCs) to study the effect of the ALS6 FUSR521H mutation on the translation machinery in motor neurons (MNs). We find, in agreement with findings of others, that protein synthesis is decreased in FUSR521H MNs. Furthermore, FUSR521H MNs are more sensitive to oxidative stress and display reduced expression of TGF-β and mTORC gene pathways when stressed. Finally, we show that IFNγ treatment reduces apoptosis of FUSR521H MNs exposed to oxidative stress and partially restores the translation rates in FUSR521H MNs. Overall, these findings suggest that a functional IFNγ response is important for FUS-mediated protein synthesis, possibly by FUS nuclear translocation in ALS6.</p

    Genetic polymorphisms modulate the folate metabolism of Brazilian individuals with Down syndrome

    Get PDF
    Individuals with Down syndrome (DS) carry three copies of the Cystathionine beta-synthase (C beta S) gene. The increase in the dosage of this gene results in an altered profile of metabolites involved in the folate pathway, including reduced homocysteine (Hcy), methionine, S-adenosylhomocysteine (SAH) and S-adenosylmethionine (SAM). Furthermore, previous studies in individuals with DS have shown that genetic variants in genes involved in the folate pathway influence the concentrations of this metabolism's products. The purpose of this study is to investigate whether polymorphisms in genes involved in folate metabolism affect the plasma concentrations of Hcy and methylmalonic acid (MMA) along with the concentration of serum folate in individuals with DS. Twelve genetic polymorphisms were investigated in 90 individuals with DS (median age 1.29 years, range 0.07-30.35 years; 49 male and 41 female). Genotyping for the polymorphisms was performed either by polymerase chain reaction (PCR) based techniques or by direct sequencing. Plasma concentrations of Hcy and MMA were measured by liquid chromatography-tandem mass spectrometry as previously described, and serum folate was quantified using a competitive immunoassay. Our results indicate that the MTHFR C677T, MTR A2756G, TC2 C776G and BHMT G742A polymorphisms along with MMA concentration are predictors of Hcy concentration. They also show that age and Hcy concentration are predictors of MMA concentration. These findings could help to understand how genetic variation impacts folate metabolism and what metabolic consequences these variants have in individuals with trisomy 21.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [04/15944-5, 03/09931-5]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [302157/2008-5]Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) [CGPP 046/2006

    Analyses of photoprotective compounds in red algae from the Brazilian coast

    Get PDF
    Qualitative and quantitative studies of mycosporine-like amino acids (MAAs) in three species of the genus Gracilaria Greville (G. birdiae, G. domingensis and G. tenuistipitata) were performed. A simple and efficient extraction procedure based on ethanol was described. HPLC, UV and mass spectrometry experiments revealed different profiles between extracts obtained from one species cultivated in the laboratory (G. tenuistipitata) and two species collected in their natural environment (G. birdiae and G. domingensis). The levels detected in the latter two species were approximately 150 times higher than in the species cultivated in vitro. This study revealed that G. birdiae and G. domingensis present a potential source for economical exploration of MAAs
    corecore