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Abstract Individuals with Down syndrome (DS) carry

three copies of the Cystathionine b-synthase (CbS) gene. The

increase in the dosage of this gene results in an altered profile

of metabolites involved in the folate pathway, including

reduced homocysteine (Hcy), methionine, S-adenosylho-

mocysteine (SAH) and S-adenosylmethionine (SAM). Fur-

thermore, previous studies in individuals with DS have

shown that genetic variants in genes involved in the folate

pathway influence the concentrations of this metabolism’s

products. The purpose of this study is to investigate whether

polymorphisms in genes involved in folate metabolism

affect the plasma concentrations of Hcy and methylmalonic

acid (MMA) along with the concentration of serum folate in

individuals with DS. Twelve genetic polymorphisms were

investigated in 90 individuals with DS (median age

1.29 years, range 0.07–30.35 years; 49 male and 41 female).

Genotyping for the polymorphisms was performed either by

polymerase chain reaction (PCR) based techniques or by

direct sequencing. Plasma concentrations of Hcy and MMA

were measured by liquid chromatography-tandem mass

spectrometry as previously described, and serum folate was

quantified using a competitive immunoassay. Our results

indicate that the MTHFR C677T, MTR A2756G, TC2 C776G

and BHMT G742A polymorphisms along with MMA con-

centration are predictors of Hcy concentration. They also

show that age and Hcy concentration are predictors of MMA

concentration. These findings could help to understand how

genetic variation impacts folate metabolism and what met-

abolic consequences these variants have in individuals with

trisomy 21.

Keywords Down syndrome � Folate � Genetic

polymorphism � Homocysteine � Methylmalonic acid

Introduction

Down syndrome (DS) is a chromosomal disorder caused by

the presence of three copies of chromosome 21 [1]. The

overexpression of genes involved in metabolic processes

results in biochemical aberrations. The effect on the vast,

integrated network of metabolic pathways leads to cellular

dysfunction and contributes to the unique pathogenesis of

DS [2].

Individuals with trisomy 21 present abnormalities in

folate metabolism that are attributed to the additional copy

of the Cystathionineb-synthase (CbS) gene located on

chromosome 21 [2, 3]. The CbS gene encodes an enzyme

that catalyzes the condensation of homocysteine (Hcy) and

serine to form cystathionine in the Hcy transsulfuration

pathway (Fig. 1). Thus, overexpression of the CbS gene

leads to an increase in the activity of this pathway. As a

result of the enhanced condensation of Hcy and
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cystathionine, there is a reduction in the concentration of

Hcy that is available for the remethylation reaction, which

is catalyzed by the vitamin B12-dependent enzyme methi-

onine synthase (MTR). Simultaneously, the hyperactivity

of the Hcy transsulfuration pathway leads to an accu-

mulation of 5-methyltetrahydrofolate (5-MTHF) and a

reduction in the conversion of 5-MTHF to tetrahydrofolate

(THF). THF is the metabolically active form of folate and

is required for de novo synthesis of nucleotides required for

RNA and DNA synthesis. Consequently, a functional folate

deficiency can be observed even in the presence of a nor-

mal or elevated concentration of folate [2]. In DS indi-

viduals, the extra copy of the CbS gene results in an altered

profile of metabolites involved in the methionine/Hcy

pathway, including reduced plasma concentrations of Hcy,

methionine, S-adenosylhomocysteine (SAH) and S-adeno-

sylmethionine (SAM) [2, 3].

Furthermore, studies have shown that genetic variants

involved in the folate metabolism can also affect the con-

centration of products derived from this metabolic process in

individuals with DS [4, 5]. Previously, we evaluated the

influence of the polymorphisms Methylenetrahydrofolate

reductase (MTHFR) C677T and A1298C, MTRA2756G, and

Reduced folate carrier 1 (RFC1) A80G on Hcy concentration

in 56 individuals with DS. We observed that the polymor-

phism A2756G of the MTR gene, which encodes a vitamin-

B12-dependent enzyme, influences Hcy concentrations in this

population [4]. In the present study, we extend this analysis to

90 individuals with DS. Here, we investigate the association

between twelve polymorphisms, MTHFR T1317C, Methio-

nine synthase reductase (MTRR) A66G, Transcobalamin 2

(TCN2) A67G and C776G, Betaine homocysteine methyl-

transferase (BHMT) G742A, Methylenetetrahydrofolate

dehydrogenase 1 (MTHFD1) G1958A, CbS T833C and

844ins68, MTHFR C677T, MTHFR A1298C, MTR A2756G

and RFC1A80G and the concentrations of serum folate,

plasma Hcy, and plasma methylmalonic acid (MMA), which

is an indicator of vitamin B12 status.

Materials and methods

This study’s protocol was approved by both the Research

Ethics Committee of São José do Rio Preto Medical School

Fig. 1 Folate metabolism in Down syndrome individuals. Arrows
indicate direct and indirect alterations in metabolites induced by

cystathionine b-synthase (CbS) overexpression in DS individuals.

BHMT Betaine-homocysteine methyltransferase, CbS Cystathionine

b-synthase, CH3 Methyl, CH2THF Methylenetetrahydrofolate, CH3THF
Methyltetrahydrofolate, Cysta cystathionine, Cys cysteine; dATP
Deoxyadenosine 50-triphosphate, dGTP Deoxyguanosine 50-triphos-

phate, dTTP Deoxythymidine 50-triphosphate, Hcy Homocysteine,

L-MM-Coamutase L-methylmalonyl coenzyme A mutase, Met methi-

onine, MMA Methylmalonic acid, MTHFD1 Methylenetetrahydrofo-

late dehydrogenase 1, MTHFR Methylenetrahydrofolate reductase,

MTR Methionine synthase, MTRR Methionine synthase reductase,

RFC1 Reduced folate carrier 1, SAH S-adenosyl-homocysteine,

SAM S-adenosyl-methionine, TCN2 Transcobalamin 2, THF
Tetrahydrofolate
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(CEP-FAMERP, 165/2004) in São Paulo State, and the

National Research Commission (CONEP) of Brazil. Ninety

DS individuals with full trisomy 21 (median age 1.29,

range 0.07–30.35 years-old; 49 male and 41 female) were

recruited at the General Genetics Outpatient Service of

Hospital de Base, Sao Jose do Rio Preto, SP, Brazil, after

family-informed consent forms were signed.

Fasting blood samples were collected for DNA extrac-

tion and separation of plasma and serum. Total plasma

concentrations of Hcy and MMA were measured by liquid

chromatography-tandem mass spectrometry [6–8]. Hcy

concentrations greater than 15 lmol/L were considered to

indicate hyperhomocysteinemia [9], and MMA concentra-

tions greater than 0.5 lmol/L defined vitamin B12 defi-

ciency (the conventional reference for vitamin B12

deficiency that was used was a concentration below

200 ng/L) [8, 10]. Folate concentrations were measured in

serum using a competitive immunoassay (Immulite kit,

DPC Medlab, Brazil), and concentrations less than

6.81 nmol/L were considered to indicate folate deficiency

in accordance with the manufacturer’s instructions.

Genomic DNA was extracted from peripheral blood

mononuclear cells using either a protocol described by

Miller et al. [11] or a GFX
TM

Genomic Blood DNA Puri-

fication Kit (GE Healthcare, USA). The genotypes of indi-

viduals at the polymorphisms MTHFRC677T, MTRA2756G,

RFC1A80G, CbS 844ins68, CbS T833C, and MTHFD

1G1958A were determined using previously described

methods [4, 12–15]. The variant C776G of the TCN2 gene

was analyzed by polymerase chain reaction-restriction

fragment length polymorphism (PCR-RFLP) using the

forward primer 50-CATCAGAACAGTGCGAGAGG-30

and the anti-sense primer described by Pietrzyk et al. [16].

The PCR products were digested with the Scrf1 enzyme.

The polymorphisms MTRRA66G, TCN2A67G and

BHMTG742A were genotyped by allelic discrimination

using Taqman probes (Applied Biosystems, Foster City,

CA, USA, TaqMan SNP genotyping assays

C__3068176_10; C__25967461_10 and C__11646606_20,

respectively). MTHFRA1298C and T1317C variants were

genotyped by direct sequencing as described elsewhere

[17] with the exception that the purification process used in

this study was performed using the enzymes exonuclease I

and shrimp alkaline phosphatase (Fermentas Life Sciences,

Brazil). This purification step was done in accordance with

the manufacturer’s instructions.

Statistical analyses

Concordance of genotype frequencies with Hardy–Wein-

berg equilibrium was evaluated by the Chi-squared test

using the BioEstat program (version 5.0), except for the

polymorphisms of RFC1 and CbS genes located on chro-

mosome 21. Because we used an RFLP-based method to

analyze variants in RFC1 and CbS, we were unable to

distinguish between heteroallelic individuals carrying one

or two copies of each allele.

Distributions of age and concentrations of plasma Hcy,

serum folate and plasma MMA were all skewed; therefore, a

logarithmic transformation was performed. To evaluate the

effect of the polymorphisms on each biochemical parameter,

linear regression analyses were performed. For Hcy analysis,

the genotypes for each polymorphism (dominant and

recessive models, separately), age, gender, folate concen-

tration, and MMA concentration were used as predictors. For

folate analysis, the predictors were the genotypes, age,

gender, Hcy concentration, and MMA concentration. For

MMA analysis, the genotypes, age, gender, folate concen-

tration and Hcy concentration were used as predictors.

Statistical analyses were performed using the Minitab

for Windows (Release 14) program. P values equal to or

less than 0.05 were considered significant.

Results

The genotype frequencies of the polymorphisms (Table 1) are

all in Hardy–Weinberg equilibrium. Hcy concentration was

quantified in 87 plasma samples (mean 5.78 ± 3.20 lmol/L;

median 4.75 lmol/L; range 1.26–20.90 lmol/L), and only

two individuals presented hyperhomocysteinemia. Of the 83

Table 1 Genotype frequencies of the polymorphisms in individuals

with Down syndrome

Wild-type

homozygous

n (%)

Heterozygous

n (%)

Mutant

homozygous

n (%)

MTHFR C677T 41 (45.6) 37 (41.1) 12 (13.3)

MTHFR A1298C 48 (53.3) 33 (36.7) 9 (10.0)

MTHFR T1317C 81 (90.0) 9 (10.0) 0

MTR A2756G 55 (61.1) 27 (30.0) 8 (8.9)

MTRR A66G 32 (35.6) 46 (51.1) 12 (13.3)

RFC1 A80Ga 15 (16.7) 62 (68.9) 13 (14.4)

TC2 A67G 72 (80.0) 15 (16.7) 3 (3.3)

TC2 C776G 37 (41.1) 45 (50.0) 8 (8.9)

CbS 844ins68a 69 (76.7) 21 (23.3) 0

CbS T883Ca 69 (76.7) 21 (23.3) 0

BHMT G742Ab 46 (51.7) 31 (34.8) 12 (13.5)

MTHFD1 G1958A 33 (36.7) 37 (41.1) 20 (22.2)

a The genotyping methods do not differentiate the presence of one or

two copies of each allele in heterozygous individuals (the gene is

located on chromosome 21 and is in triplicate in individuals with

Down syndrome)
b Genotyping one individual was not possible
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individuals in which folate concentration was measured

(mean: 19.42 ± 11.48 ng/mL; median 15.80 ng/mL; range

4.70–72.0 ng/mL), none were deficient for this vitamin.

Based on MMA concentrations (mean 0.53 ± 0.80 lmol/L;

median 0.25 lmol/L; range: 0.09–4.77 lmol/L), we con-

cluded that 19 out of 85 individuals presented vitamin B12

deficiency.

Table 2 shows the mean values of Hcy, folate and MMA

that are associated with the genotypes in the dominant and

recessive models. Linear regression analyses considering

the dominant effect of the variant alleles showed that the

genotype MTR 2756 AG or GG is associated with increased

Hcy concentration (coefficient 0.267; P = 0.038). Con-

sidering the recessive effect of the variant alleles, the

genotypes MTHFR 677 TT (coefficient -0.420; P =

0.022), TC2 776 GG (coefficient -0.464; P = 0.050) and

BHMT 742 AA (coefficient -0.394; P = 0.036) were

associated with decreased Hcy concentration.

MMA concentration was inversely associated with age

in both dominant (coefficient -0.063; P = 0.001) and

recessive (coefficient -0.062; P \ 0.0001) models. Both

models also showed that MMA concentration and Hcy

concentration are mutually predictive; MMA concentration

is a predictor of Hcy concentration (Dominant model:

coefficient 0.184; P = 0.010; Recessive model: coefficient

0.158; P = 0.025) and vice versa (Dominant model:

coefficient 0.574; P = 0.010; Recessive model: coefficient

0.503; P = 0.025).

Discussion

Previous studies have shown that the presence of three

copies of the CbS gene and the resulting decrease in the

MTR-mediated reaction lead to disturbances in folate

metabolism in individuals with DS. The result is a func-

tional folate deficiency that may contribute to the meta-

bolic pathology of this complex genetic disorder [2].

Although the role of abnormal folate metabolism in the DS

phenotype is still unclear, Locke et al. [17] reported an

association between the polymorphisms RFC1 A80G and

MTHFR A1298C and the occurrence of atrioventricular

septal defect in individuals with DS. Moreover, it has been

hypothesized that abnormal folate metabolism due to CBS

overexpression could be related to the impaired DNA

repair capability observed in DS [18].

Hcy, vitamin B12, and folate are metabolic and nutri-

tional factors directly related to the folate pathway, and

alterations in their concentrations may indicate or lead to

disturbances in folate metabolism [2, 19]. Previous studies

have shown that genetic polymorphisms may influence

plasma concentrations of Hcy either directly or by affecting

plasma folate concentrations [5, 20–25]. Here, the results

Table 2 Mean values of Hcy, folate and MMA according to the

genotypes in the dominant and recessive models

Polymorphism Hcy

(lmol/L)

Folate

(ng/mL)

MMA

(lmol/L)

Dominant model

MTHFR C677T

CC 6.43 21.47 0.54

CT and TT 5.27 17.86 0.53

MTHFR A1298C

AA 5.48 19.23 0.59

AC and CC 6.20 19.90 0.48

MTHFR T1317Ca

TT 5.70 19.69 0.55

TC 6.97 18.31 0.45

MTR A2756Gb

AA 5.17 20.31 0.41

AG and GG 6.79 18.47 0.73

MTRR A66G

AA 5.87 21.04 0.64

AG and GG 5.67 19.78 0.35

RFC1 A80G

AA 6.57 23.29 0.50

AG and GG 5.37 19.79 0.19

TC2 A67G

AA 5.98 19.53 0.54

AG and GG 5.15 19.67 0.50

TC2 C776G

CC 5.85 17.53 0.47

CG and GG 5.24 21.54 0.55

MTHFD1 G1958A

GG 6.10 19.47 0.45

GA and AA 5.29 19.76 0.59

BHMT G742A

GG 6.60 20.10 0.65

AA and GA 4.96 19.21 0.43

CBS 844ins68a

SS 5.95 20.09 0.52

SM 5.37 17.61 0.58

CBS T833Ca

TT 5.95 20.09 0.52

TC 5.37 17.61 0.58

Recessive model

MTHFR C677Tb

CC and CT 6.08 20.16 0.58

TT 3.82 15.14 0.26

MTHFR A1298C

AA and AC 5.62 19.35 0.54

CC 7.54 21.21 0.51

MTR A2756G

AA and AG 5.84 19.60 0.49

GG 5.56 19.16 1.07

9280 Mol Biol Rep (2012) 39:9277–9284

123



indicate that the polymorphism MTHFR 677 TT is asso-

ciated with a decrease in Hcy concentration. This was an

unexpected finding as previous studies have shown that the

MTHFR 677 T allele is associated with reduced MTHFR

enzyme activity [26] and increased Hcy concentration [5,

20, 23–25]. Licastro et al. [5] observed elevated Hcy

concentrations in elderly DS individuals with the MTHFR

677 TT genotype; however, in other studies that used both

children and adults with DS, no association between the

MTHFR C677T polymorphism and Hcy concentration was

seen [19, 27]. Recently, Matteini et al. [28] observed an

association between the MTHFR 677 TT genotype and

decreased MMA concentration in patients with frailty

syndrome. Furthermore, they showed that improved B12

status was associated with this genotype. While this finding

is contrary to those of previous studies [23], it does cor-

roborate with our results. One explanation for the dis-

crepancies between the conclusions of these studies is that

the examined populations were different from one another

in age.

The results of the analysis of the association between

MTR 2756 genotypes and Hcy concentrations are consis-

tent with our previous observation of an association

between the G allele and increased Hcy concentrations in

DS individuals [4] and are also consistent with the results

of other studies of non-DS individuals [21, 22]. MTR is an

important vitamin B12-dependent enzyme involved in

folate metabolism. This enzyme catalyzes the transmeth-

ylation of Hcy to methionine in a reaction that utilizes

methyl-tetrahydrofolate (CH3THF) as a methyl group

donor (Fig. 1). There are still no studies evaluating the

difference between the enzymatic activity of the wild- and

variant-types of MTR, but the association of the variant

MTR 2756 G with increased Hcy concentration suggests

that this polymorphism could result in an impaired enzyme

[4, 21, 22].

To the best of our knowledge, this is the first study to

investigate the influence of polymorphisms in genes

encoding the BHMT and MTHFD1 proteins in individuals

with DS. The former is a protein that remethylates Hcy to

methionine using betaine as the methyl donor [29], and the

latter is a protein known to catalyze the conversion of THF

to the corresponding 10-formyl, 5,10-methenyl and 5,10-

methylene derivatives [30] (Fig. 1). In the present study, no

associations were found between Hcy, folate and MMA

concentrations and the polymorphism MTHFD1G1958A.

Our results, however, did show a connection between the

variant BHMT 742 AA genotype and decreased plasma

Hcy concentration. This polymorphism produces two dis-

tinct alloenzymes, which exhibit significant differences in

Km values for Hcy and betaine [31]. The Km values of the

variant alloenzyme are lower than those of the wild-type.

The decreased Km of the alloenzyme may be responsible

for the increased efficiency of Hcy remethylation, which

requires betaine as a methyl group donor, [32], reducing

Hcy concentration. Furthermore, studies have suggested a

protective role of the homozygous AA genotype against

neural tube defects [33] and cardiovascular disease [34],

suggesting that the BHMT 742 G allele may have a dele-

terious effect on Hcy metabolism. Supporting this

hypothesis and consistent with our findings, the BHMT 742

AA genotype was associated with lower Hcy concentra-

tions in a previous study [33].

The TCN2 enzyme encodes a transport protein required

for cellular uptake of B12. This vitamin functions as co-

factor of MTR, an important enzyme in folate metabolism

that catalyzes the transmethylation of Hcy to methionine in

a reaction that utilizes methyl-tetrahydrofolate (CH3THF)

as a methyl group donor (Fig. 1). In the present study, the

TCN2 776 GG genotype was associated with reduced Hcy

concentration. In agreement with our results, Brouns et al.

[35] reported an association between the TCN2 776 G

allele and a reduction in Hcy concentration observed in the

amniotic fluid of pregnancies with a child having a com-

plex birth defect an index for fetal metabolism. Previously

published data show that the TCN2 776 G allele is asso-

ciated with decreased transcription and decreased concen-

trations of cellular and plasma transcobalamin, the carrier

protein that delivers vitamin B12 to cells [36]. This suggests

Table 2 continued

Polymorphism Hcy

(lmol/L)

Folate

(ng/mL)

MMA

(lmol/L)

MTRR A66G

AA and AG 5.52 19.46 0.54

GG 7.87 20.20 0.48

RFC1 A80G

AA and AG 5.99 19.88 0.57

GG 4.74 17.63 0.32

TC2 A67G

AA and AG 5.84 19.49 0.54

GG 4.88 21.20 0.29

TC2 C776Gb

CC and CG 6.02 18.92 0.56

GG 3.57 26.47 0.22

MTHFD1 G1958A

GG and GA 5.89 19.69 0.53

AA 5.57 19.10 0.54

BHMT G742Ab

GG and GA 6.04 19.81 0.57

AA 4.53 18.04 0.32

a The homozygous mutant genotype was not present in the sample
b Polymorphism associated with modulation of Hcy in the linear

regression
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that the TCN2 776 G allele may encode a protein that is

less efficient in delivering B12 to tissues. The negative

impact of the TCN2 776 G allele on the intracellular

availability of vitamin B12 is demonstrated by this vari-

ant’s association with a lower mean concentration of the

transcobalamin-vitamin B12 complex (holotranscobalam-

in) [36–38] in addition to increased MMA [39] and Hcy

concentrations [37, 40]. Previous studies, however, did

not find an association between this polymorphism and

either holotranscolbalamin [41] or Hcy [38, 42]. Fur-

thermore, an increase in Hcy concentration was shown to

be associated with the heterozygous TCN2 776 CG

genotype when compared to the homozygous genotypes

[36]. The discrepancy between these studies may be the

result of several variables, such as differences in age,

ethnicity, gender of the study subjects, folate intake,

vitamin B12 and B6 intakes, genetic factors, and study

design [4, 43, 44].

In this study, MMA concentration was inversely asso-

ciated with age. Previous studies have shown that vitamin

B12 concentration is inversely correlated with age [45, 46],

corroborating with these findings, once MMA concentra-

tion reflects inversely the status of vitamin B12. Vitamin

B12 acts as a cofactor of the L-methylmalonyl-CoA mutase

enzyme (Fig. 1), and its deficiency avoids the conversion

of methylmalonyl-CoA to succinyl-CoA. This blockage

diverts the substrate for MMA synthesis and leads to an

increase in the concentrations of MMA and Hcy [47, 48].

Taken together, the results from previous studies that show

a negative correlation between the concentration of vitamin

B12 and Hcy [49] are in agreement with our observation of

a positive correlation between the concentrations of MMA

and Hcy.

Lastly, in July of 2004, the Brazilian government

mandated that grain products must be fortified with folic

acid [50]. The ensuing programs focused on increasing the

dietary intake of folate to approximately 150 mg per per-

son per day depending on the diet. This policy was

implemented in order to reduce the incidence of neural

tube defects. In the USA, fortification of grain products

with folic acid led to a decrease in the mean Hcy con-

centration from 10.1 to 9.4 mmol/L [51]. Moreover, it is

believed that the change in dietary intake of folate in the

Brazilian population will significantly affect these values in

the Brazilian population. We believe that such an obser-

vation would have an impact on the concentrations of

folate and Hcy in our DS sample.

In conclusion, our results indicate that the MTHFR

C677T, MTR A2756G, TC2 C776G and BHMT G742A

polymorphisms along with MMA concentration are pre-

dictors of Hcy concentration. They also show that age and

Hcy concentration are predictors of MMA concentration.

These findings could help to understand how genetic

variation impacts folate metabolism and what metabolic

consequences these variants have in individuals with tri-

somy 21.
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