1,489 research outputs found

    Ab initio spectroscopic characterization of the radical CH3_3OCH2_2 at low temperatures

    Get PDF
    Spectroscopic and structural properties of methoxymethyl radical (CH3_3OCH2_2, RDME) are determined using explicitly correlated ab initio methods. This radical of astrophysical and atmospheric relevance has not been fully characterized at low temperatures, which has delayed the astrophysical searches. We provide rovibrational parameters, excitations to the low energy electronic states, torsional and inversion barriers and low vibrational energy levels. In the electronic ground state (X2^2A), which appears "clean" from non-adiabatic effects, the minimum energy structure is an asymmetric geometry which rotational constants and dipole moment have been determined to be A0_0=46718.6745 MHz, B0_0=10748.4182 MHz, and C0_0=9272.5105 MHz, and 1.432 D (μA\mu_A=0.6952 D, μB\mu_B=1.215 D, μC\mu_C=0.3016 D), respectively. A variational procedure has been applied to determine torsion-inversion energy levels. Each level splits into 3 subcomponents (A1_1/A2_2 and E) corresponding to the three methyl torsion minima. Although the potential energy surface presents 12 minima, at low temperatures, the infrared band shapes correspond to a surface with only three minima because the top of the inversion Vα^{\alpha} barrier at α=0∘{\alpha}=0^{\circ} (109 cm−1^{-1}) stands below the zero point vibrational energy and the CH2_2 torsional barrier is relatively high (∼\sim2000 cm−1^{-1}). The methyl torsion barrier was computed to be ∼\sim500 cm−1^{-1} and produces a splitting of 0.01 cm−1^{-1} of the ground vibrational state

    Decoupled and unidirectional asymptotic models for the propagation of internal waves

    Full text link
    We study the relevance of various scalar equations, such as inviscid Burgers', Korteweg-de Vries (KdV), extended KdV, and higher order equations (of Camassa-Holm type), as asymptotic models for the propagation of internal waves in a two-fluid system. These scalar evolution equations may be justified with two approaches. The first method consists in approximating the flow with two decoupled, counterpropagating waves, each one satisfying such an equation. One also recovers homologous equations when focusing on a given direction of propagation, and seeking unidirectional approximate solutions. This second justification is more restrictive as for the admissible initial data, but yields greater accuracy. Additionally, we present several new coupled asymptotic models: a Green-Naghdi type model, its simplified version in the so-called Camassa-Holm regime, and a weakly decoupled model. All of the models are rigorously justified in the sense of consistency

    Carpal tunnel syndrome associated with oral bisphosphonates. A population-based cohort study

    Get PDF
    © 2016 Carvajal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Bisphosphonates are widely used to prevent osteoporotic fractures. Some severe musculoskeletal reactions have been described with this medication; among them, some cases of carpal tunnel syndrome. Thus, the aim of this study was to explore whether bisphosphonates may be associated with this syndrome. Methods: A cohort study was conducted to compare exposed to unexposed women; the exposed group was that composed of women having received at least one prescription of an oral bisphosphonate. For the purpose, we used information from The Health Improvement Network (THIN) database. The outcome of interest was defined as those women diagnosed with carpal tunnel syndrome. A survival analysis was performed; the Cox proportional hazard model was used to calculate hazard ratios and 95% confidence intervals, and to adjust for identified confounding variables. Results: Out of a sample of 59,475 women older than 51 years, 19,825 were treated with bisphosphonates during the period studied. No differences in age distribution or mean follow-up time were observed between the two groups in comparison. Overall, there were 572 women diagnosed with carpal tunnel syndrome, 242 (1.2%) in the group exposed to bisphosphonates, and 330 (0.8%) in the unexposed. An adjusted hazard ratio of developing carpal tunnel syndrome of 1.38 (95%CI, 1.15-1.64) was found for women exposed to bisphosphonates; no significant changes in the hazard ratios were found when considering different levels of bisphosphonate exposure

    Electronic Properties and Magnetic Moment Distribution on Perovskite Type Slabs: Sr2FeMoO6, SrFeO3 and SrMoO3

    Get PDF
    AbstractPerovskite type slabs were excised from the Sr2FeMoO6, SrFeO3 and SrMoO3 bulk double perovskites, respectively, leaving (001) free surfaces. Supercells were built up for each slab, keeping a 10Å initial free space, to optimize the geometry. Once the minimum energy state was identified, the electronic and magnetic properties of the [001] oriented slabs have been calculated within the Density Functional Theory (DFT) scheme, with the Hubbard-corrected Local Density Approximation (LDA+U) and the CA−PZ functional. Magnetic moment for each atom in the systems was calculated; spin values for the Mo atoms are –0.02ħ, − 0.13ħ and 0.56ħ for the SrMoO3 slab system case and they are aligned antiferromagnetically. Contrarily, Mo magnetic moments in the Sr2FeMoO3 slab system align antiferromagnetically to the corresponding Fe atoms, being around 10% in magnitude; meanwhile, Fe moments increase and align ferromagnetically in SrFeO3. The Densities of States (DOS) and band structures were calculated also to study the electronic behaviors. The vacuum region changes from the initial 10Å, as geometry stabilizes for all the slab cases; however, slab images separation evolves notoriously different for each model

    Evaluation of Mexico City Clay Dynamic Properties Using a Parameter Identification Approach

    Get PDF
    Laboratory-determined soil dynamic properties are always (to different degrees) affected by sample disturbance, scale effects, deficient modeling of in situ conditions, and so on. The installation of vertical arrays of strong motion instruments and the ensuing records obtained during various seismic events, have opened the opportunity to explore other alternatives to evaluate soil dynamic properties by solving the inverse problem. In this paper, an analytical procedure that allows the solution of this problem in a simple way is presented and applied to a case history in Mexico City. The model assumes 1-D propagation of shear waves throughout homogeneous viscoelastic soil deposits. The results obtained here are compared with the velocities measured by means of field studies at Central de Abasto Oficinas (CAO) site with a P-S logging system. These comparisons show the potential of this procedure

    Switching of the Chiral Magnetic Domains in the Hybrid Molecular/Inorganic Multiferroic (ND4)2[FeCl5(D2O)]

    Get PDF
    (ND4)2[FeCl5(D2O)] represents a promising example of the hybrid molecular/inorganic approach to create materials with strong magneto-electric coupling. Neutron spherical polarimetry, which is directly sensitive to the absolute magnetic configuration and domain population, has been used in this work to unambiguously prove the multiferroicity of this material. We demonstrate that the application of an electric field upon cooling results in the stabilization of a single-cycloidal magnetic domain below 6.9 K, while poling in the opposite electric field direction produces the full population of the domain with opposite magnetic chirality. We prove the complete switchability of the magnetic domains at low temperature by the applied electric field, which constitutes a direct proof of the strong magnetoelectric coupling. Additionally, we refine the magnetic structure of the ordered ground state, deducing the underlying magnetic space group consistent with the direction of the ferroelectric polarization, and we provide evidence of a collinear amplitude-modulated state with magnetic moments along the a-axis in the temperature region between 6.9 and 7.2 K

    Inhibition of DNA damage response at telomeres improves the detrimental phenotypes of Hutchinson–Gilford Progeria Syndrome

    Get PDF
    Hutchinson–Gilford progeria syndrome (HGPS) is a genetic disorder characterized by premature aging features. Cells from HGPS patients express progerin, a truncated form of Lamin A, which perturbs cellular homeostasis leading to nuclear shape alterations, genome instability, heterochromatin loss, telomere dysfunction and premature entry into cellular senescence. Recently, we reported that telomere dysfunction induces the transcription of telomeric non-coding RNAs (tncRNAs) which control the DNA damage response (DDR) at dysfunctional telomeres. Here we show that progerin-induced telomere dysfunction induces the transcription of tncRNAs. Their functional inhibition by sequence-specific telomeric antisense oligonucleotides (tASOs) prevents full DDR activation and premature cellular senescence in various HGPS cell systems, including HGPS patient fibroblasts. We also show in vivo that tASO treatment significantly enhances skin homeostasis and lifespan in a transgenic HGPS mouse model. In summary, our results demonstrate an important role for telomeric DDR activation in HGPS progeroid detrimental phenotypes in vitro and in vivo

    Optical and structural characterisation of epitaxial nanoporous GaN grown by CVD

    Get PDF
    In this paper we study the optical properties of nanoporous gallium nitride (GaN) epitaxial layers grown by chemical vapour deposition on non-porous GaN substrates, using photoluminescence, cathodoluminescence, and resonant Raman scattering, and correlate them with the structural characteristic of these films. We pay special attention to the analysis of the residual strain of the layers and the influence of the porosity in the light extraction. The nanoporous GaN epitaxial layers are under tensile strain, although the strain is progressively reduced as the deposition time and the thickness of the porous layer increases, becoming nearly strain free for a thickness of 1.7 μm. The analysis of the experimental data point to the existence of vacancy complexes as the main source of the tensile strain
    • …
    corecore