412 research outputs found

    Butterfly community temporal trends and responses to resource availability along a hydrologic gradient of montane meadows

    Get PDF
    Butterfly species have proven to be useful indicators of environmental change in many ecosystems. Their tight association with plant communities and their sensitivity to microclimates can provide insight regarding changes in landscape or vegetative composition. Here we report on a study within two regions of the Greater Yellowstone Ecosystem where butterflies have been surveyed in montane meadows along a hydrological gradient since 1997. We have studied this system to better understand butterfly community ecology within one of the most pristine meadow systems in the lower 48 of the United States. This research examined the temporal and spatial patterns of montane meadow butterfly communities in relation to meadow moisture availability and quantity of floral and larval host plant resources. This information is a valuable tool for conservation of montane meadows, and could be useful in monitoring meadow changes due to climatic, anthropogenic, or other natural changes in the landscape

    Montane meadow change during drought varies with background hydrologic regime and plant functional group

    Get PDF
    Climate change models for many ecosystems predict more extreme climatic events in the future, including exacerbated drought conditions. Here we assess the effects of drought by quantifying temporal variation in community composition of a complex montane meadow landscape characterized by a hydrological gradient. The meadows occur in two regions of the Greater Yellowstone Ecosystem (Gallatin and Teton) and were classified into six categories (M1–M6, designating hydric to xeric) based upon Satellite pour l’Observation de la Terre (SPOT) satellite imagery. Both regions have similar plant communities, but patch sizes of meadows are much smaller in the Gallatin region. We measured changes in the percent cover of bare ground and plants by species and functional groups during five years between 1997 and 2007. We hypothesized that drought effects would not be manifested evenly across the hydrological gradient, but rather would be observed as hotspots of change in some areas and minimally evident in others. We also expected varying responses by plant functional groups (forbs vs. woody plants). Forbs, which typically use water from relatively shallow soils compared to woody plants, were expected to decrease in cover in mesic meadows, but increase in hydric meadows. Woody plants, such as Artemisia, were expected to increase, especially in mesic meadows. We identified several important trends in our meadow plant communities during this period of drought: (1) bare ground increased significantly in xeric meadows of both regions (Gallatin M6 and Teton M5) and in mesic (M3) meadows of the Teton, (2) forbs decreased significantly in the mesic and xeric meadows in both regions, (3) forbs increased in hydric (M1) meadows of the Gallatin region, and (4) woody species showed increases in M2 and M5 meadows of the Teton region and in M3 meadows of the Gallatin region. The woody response was dominated by changes in Artemisia spp. and Chrysothamnus viscidiflorus. Thus, our results supported our expectations that community change was not uniform across the landscape, but instead could be predicted based upon functional group responses to the spatial and temporal patterns of water availability, which are largely a function of plant water use and the hydrological gradient.This material is based upon research supported by the National Science Foundation under Grants 0518150 and EPS0814387, the Environmental Protection Agency under STAR Grant R825155, the University of Wyoming National Park Service Research Station, and the Grand Teton Natural History Association. We thank the University of Wyoming National Park Service Research Station (particularly Henry Harlow and Sue Consolo-Murphy) and the U.S. Forest Service for providing support and housing. Philip Dixon provided statistical consulting, and Mark Jakubauskas collaborated in setting up our initial field campaigns. Edward Cook assisted in selection and assessment of PDSI data; and Lisa Graumlich, Andy Bunn, Steve Gray, and Jeremy Littel advised us on climate reconstruction options for the GYE. Scott Creel, Sue Fairbanks, and Matt Kaufmann provided information on elk population trends in the region. Jill Sherwood designed the map. William Clark and two anonomous reviewers provided important suggestions that helped improve the manuscript. Finally, we thank the many research technicians and field assistants who helped in the fieldwork

    Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction

    Get PDF
    For this study, we generated thallium (Tl) isotope records from two anoxic basins to track the earliest changes in global bottom water oxygen contents over the Toarcian Oceanic Anoxic Event (TOAE; ∼183 Ma) of the Early Jurassic. The T-OAE, like other Mesozoic OAEs, has been interpreted as an expansion of marine oxygen depletion based on indirect methods such as organic-rich facies, carbon isotope excursions, and biological turnover. Our Tl isotope data, however, reveal explicit evidence for earlier global marine deoxygenation of ocean water, some 600 ka before the classically defined T-OAE. This antecedent deoxygenation occurs at the Pliensbachian/Toarcian boundary and is coeval with the onset of initial large igneous province (LIP) volcanism and the initiation of a marine mass extinction. Thallium isotopes are also perturbed during the T-OAE interval, as defined by carbon isotopes, reflecting a second deoxygenation event that coincides with the acme of elevated marine mass extinctions and the main phase of LIP volcanism. This suggests that the duration of widespread anoxic bottom waters was at least 1 million years in duration and spanned early to middle Toarcian time. Thus, the Tl data reveal a more nuanced record of marine oxygen depletion and its links to biological change during a period of climatic warming in Earth’s past and highlight the role of oxygen depletion on past biological evolution

    Theoretical analysis of the electronic structure of the stable and metastable c(2x2) phases of Na on Al(001): Comparison with angle-resolved ultra-violet photoemission spectra

    Full text link
    Using Kohn-Sham wave functions and their energy levels obtained by density-functional-theory total-energy calculations, the electronic structure of the two c(2x2) phases of Na on Al(001) are analysed; namely, the metastable hollow-site structure formed when adsorption takes place at low temperature, and the stable substitutional structure appearing when the substrate is heated thereafter above ca. 180K or when adsorption takes place at room temperature from the beginning. The experimentally obtained two-dimensional band structures of the surface states or resonances are well reproduced by the calculations. With the help of charge density maps it is found that in both phases, two pronounced bands appear as the result of a characteristic coupling between the valence-state band of a free c(2x2)-Na monolayer and the surface-state/resonance band of the Al surfaces; that is, the clean (001) surface for the metastable phase and the unstable, reconstructed "vacancy" structure for the stable phase. The higher-lying band, being Na-derived, remains metallic for the unstable phase, whereas it lies completely above the Fermi level for the stable phase, leading to the formation of a surface-state/resonance band-structure resembling the bulk band-structure of an ionic crystal.Comment: 11 pages, 11 postscript figures, published in Phys. Rev. B 57, 15251 (1998). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    A theoretical model for template-free synthesis of long DNA sequence

    Get PDF
    This theoretical scheme is intended to formulate a potential method for high fidelity synthesis of Nucleic Acid molecules towards a few thousand bases using an enzyme system. Terminal Deoxyribonucleotidyl Transferase, which adds a nucleotide to the 3′OH end of a Nucleic Acid molecule, may be used in combination with a controlled method for nucleotide addition and degradation, to synthesize a predefined Nucleic Acid sequence. A pH control system is suggested to regulate the sequential activity switching of different enzymes in the synthetic scheme. Current practice of synthetic biology is cumbersome, expensive and often error prone owing to the dependence on the ligation of short oligonucleotides to fabricate functional genetic parts. The projected scheme is likely to render synthetic genomics appreciably convenient and economic by providing longer DNA molecules to start with

    Cardiovascular magnetic resonance for the assessment of patients undergoing transcatheter aortic valve implantation: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Before trans-catheter aortic valve implantation (TAVI), assessment of cardiac function and accurate measurement of the aortic root are key to determine the correct size and type of the prosthesis. The aim of this study was to compare cardiovascular magnetic resonance (CMR) and trans-thoracic echocardiography (TTE) for the assessment of aortic valve measurements and left ventricular function in high-risk elderly patients submitted to TAVI.</p> <p>Methods</p> <p>Consecutive patients with severe aortic stenosis and contraindications for surgical aortic valve replacement were screened from April 2009 to January 2011 and imaged with TTE and CMR.</p> <p>Results</p> <p>Patients who underwent both TTE and CMR (n = 49) had a mean age of 80.8 ± 4.8 years and a mean logistic EuroSCORE of 14.9 ± 9.3%. There was a good correlation between TTE and CMR in terms of annulus size (R<sup>2 </sup>= 0.48, p < 0.001), left ventricular outflow tract (LVOT) diameter (R<sup>2 </sup>= 0.62, p < 0.001) and left ventricular ejection fraction (LVEF) (R<sup>2 </sup>= 0.47, p < 0.001) and a moderate correlation in terms of aortic valve area (AVA) (R<sup>2 </sup>= 0.24, p < 0.001). CMR generally tended to report larger values than TTE for all measurements. The Bland-Altman test indicated that the 95% limits of agreement between TTE and CMR ranged from -5.6 mm to + 1.0 mm for annulus size, from -0.45 mm to + 0.25 mm for LVOT, from -0.45 mm<sup>2 </sup>to + 0.25 mm<sup>2 </sup>for AVA and from -29.2% to 13.2% for LVEF.</p> <p>Conclusions</p> <p>In elderly patients candidates to TAVI, CMR represents a viable complement to transthoracic echocardiography.</p
    corecore