3,678 research outputs found

    Development of a container for handling, testing, and storing discrete microelectronic components

    Get PDF
    A container has been developed for handling, testing, burning-in, and storing discrete microelectronic components without removal from the protective package. The package was designed to accommodate the leadless inverted device and other carrier-mounted active devices and chip-type discrete resistors and capacitors. Before the indicated development, components were handled and tested in various ways, some of which resulted in damage or contamination. The basic design of the container utilizes precision machined printed circuit boards and chemically milled (photoetched) contact springs. Included in this design for protection is an O-ring-sealed cover. Methods of fabrication and limitations of the current hardware are presented. Current applications of and possible extensions to the technology are discussed

    Pre-test analysis of protected loss of primary pump transients in CIRCE-HERO facility

    Get PDF
    In the frame of LEADER project (Lead-cooled European Advanced Demonstration Reactor), a new configuration of the steam generator for ALFRED (Advanced Lead Fast Reactor European Demonstrator) was proposed. The new concept is a super-heated steam generator, double wall bayonet tube type with leakage monitoring [1]. In order to support the new steam generator concept, in the framework of Horizon 2020 SESAME project (thermal hydraulics Simulations and Experiments for the Safety Assessment of MEtal cooled reactors), the ENEA CIRCE pool facility will be refurbished to host the HERO (Heavy liquid mEtal pRessurized water cOoled tubes) test section to investigate a bundle of seven full scale bayonet tubes in ALFRED-like thermal hydraulics conditions. The aim of this work is to verify thermofluid dynamic performance of HERO during the transition from nominal to natural circulation condition. The simulations have been performed with RELAP5-3D© by using the validated geometrical model of the previous CIRCE-ICE test section [2], in which the preceding heat exchanger has been replaced by the new bayonet bundle model. Several calculations have been carried out to identify thermal hydraulics performance in different steady state conditions. The previous calculations represent the starting points of transient tests aimed at investigating the operation in natural circulation. The transient tests consist of the protected loss of primary pump, obtained by reducing feed-water mass flow to simulate the activation of DHR (Decay Heat Removal) system, and of the loss of DHR function in hot conditions, where feed-water mass flow rate is absent. According to simulations, in nominal conditions, HERO bayonet bundle offers excellent thermal hydraulic behavior and, moreover, it allows the operation in natural circulation

    Post-test simulation of a PLOFA transient test in the CIRCE-HERO facility

    Get PDF
    CIRCE is a lead–bismuth eutectic alloy (LBE) pool facility aimed to simulate the primary system of a heavy liquid metal (HLM) cooled pool-type fast reactor. The experimental facility was implemented with a new test section, called HERO (Heavy liquid mEtal pRessurized water cOoled tubes), which consists of a steam generator composed of seven double-wall bayonet tubes (DWBT) with an active length of six meters. The experimental campaign aims to investigate HERO behavior, which is representative of the tubes that will compose ALFRED SG. In the framework of the Horizon 2020 SESAME project, a transient test was selected for the realization of a validation benchmark. The test consists of a protected loss of flow accident (PLOFA) simulating the shutdown of primary pumps, the reactor scram and the activation of the DHR system. A RELAP5-3D© nodalization scheme was developed in the pre-test phase at DIAEE of “Sapienza” University of Rome, providing useful information to the experimentalists. The model consisted to a mono-dimensional scheme of the primary flow path and the SG secondary side, and a multi-dimensional component simulating the large LBE pool. The analysis of experimental data, provided by ENEA, has suggested to improve the thermal–hydraulic model with a more detailed nodalization scheme of the secondary loop, looking to reproduce the asymmetries observed on the DWBTs operation. The paper summarizes the post-test activity performed in the frame of the H2020 SESAME project as a contribution of the benchmark activity, highlighting a global agreement between simulations and experiment for all the primary circuit physical quantities monitored. Then, the attention is focused on the secondary system operation, where uncertainties related to the boundary conditions affect the computational results

    Investigation on RELAP5-3D© capability to predict thermal stratification in liquid metal pool-type system and comparison with experimental data

    Get PDF
    A numerical activity, aimed to evaluate the capability of RELAP5-3D© to reproduce the main thermal-hydraulic phenomena in an HLM pool-type facility, in different operative conditions, is presented. For this purpose, the experimental campaign performed in CIRCE-ICE test facility has been selected for the code assessment. Two experimental tests have been analyzed: TEST A consisting in a transition from no-power to a full power steady state conditions, and TEST I, consisting in a transition from gas-enhanced circulation to natural circulation, simulating a protected loss of heat sink plus a loss of flow accident. Three different pool modelling approaches are presented, consisting in a single vertical pipe, parallel pipes with cross junctions and multi-dimensional component. The comparison with experimental data has highlighted the need to divide the large pool in several sections to reproduce the natural convection, strictly correlated with the thermal stratification. The multi-dimensional component seems to be the best practice for the evaluation of this phenomenon even if the lack of specific correlation for heat transfer coefficient in quasi-stagnant conditions in large tanks is a limit for the accuracy of the results. In addition, the paper presents a detailed nodalization of the fuel pin bundle, highlighting quite good capabilities of RELAP5-3D as a subchannel analysis code

    Terminology for contrast-enhanced sonography: a practical glossary.

    Get PDF
    Objective. The purpose of this glossary is to offer an updated guide to the correct terminology for contrast-enhanced sonography. Methods. This report was prepared by a panel of radiologists from the Sonography Section of the Italian Association of Medical Radiology. A leading author prepared a list of terms based on a comprehensive literature survey. The draft was analyzed by 3 experts on the topic of contrast-enhanced sonography. These reviewers reached a consensus and prepared the final version. Results. A list of 137 terms is included. These terms are briefly defined. Their proper application is discussed, with special reference to potential misleading uses. Conclusions. Contrast-enhanced sonography is a relatively new diagnostic tool, now entering clinical practice in several countries. Use of appropriate, universal terminology is mandatory in the scientific setting to allow comparison between different published experiences. Additionally, use of clear, standardized terminology is necessary in the clinical setting to facilitate report understanding by the referring physician. Standardized, nonequivocal nomenclature may also help future diffusion of sonographic contrast media in countries where their application is still not approved

    Preliminary neutron kinetic. Thermal hydraulic coupled analysis of the ALFRED reactor using PHISICS/RELAP5-3D

    Get PDF
    The development of a lead-cooled fast reactor (LFR) demonstrator was proposed, mainly in EU, to investigate the feasibility of an industrial size ELFR (European Lead-cooled Fast Reactor). The demonstrator, called ALFRED (Advanced Lead-cooled Fast Reactor European Demonstrator), consists of a pool-type lead-cooled fast reactor, with a nominal thermal power of 300 MWt. This paper aims to verify the capability of the PHISICS/RELAP5-3D coupled approach to simulate transients of such reactor and to evaluate the effects of accidental scenarios relevant for the safety analysis on the system thermal-hydraulics and on the core power spatial evolution. RELAP5-3D©, developed at Idaho National Laboratory (INL), is a thermal-hydraulic system code, validated for a wide range of transient simulations. The code provides the possibility to simulate innovative working fluids (such as lead and lead alloys) and to use a fully integrated multi-dimensional nodalization. In addition, the need to study complex neutronic systems recommended the development of a new kinetic model allowing the calculation with any number of energy groups and also considering the transport for the angular variations. At this purpose, INL developed PHISICS (Parallel and Highly Innovative Simulation for INL Code System) and its coupling methodology with RELAP5-3D. The simulation activity described in this paper has been focused on the safety analysis of ALFRED reactor assuming the occurrence of two unprotected transient scenarios: unprotected loss of flow (ULOF) and unprotected transient overpower (UTOP). At this purpose, a thermal-hydraulic geometrical scheme of the whole reactor has been developed. The models and the outcomes of the calculations are described and discussed in the paper, highlighting the capability of the coupling approach to obtain results consistent with the ones available in the literature

    Dynamic reconfiguration of electrical connections for partially shaded PV modules: Technical and economical performances of an Arduino-based prototype

    Get PDF
    The partial shading phenomenon is a well known problem of photovoltaic plants. Partial shading leads to undesirable effects such the electrical mismatch, the generation of hot spots, and generally the decrease of production of electric energy. To mitigate the last effect, a dynamic reconfiguration of the electrical connections between modules was taken into account. In this paper, starting from an already developed system for a small-scale photovoltaic plant reconfiguration, the study of the economical benefits of the employment of a reconfigurator are traced. Five different incentive policies of diverse Countries have been considered to evaluate the increase of Net Present Value of system with and without a reconfigurator

    Genotyping of Sex Hormone-Related Pathways in Benign and Malignant Human Prostate Tissues: Data of a Preliminary Study

    Get PDF
    Prostate cancer (PCa) is a major health issue in Westernized countries, representing a common cause of morbidity and mortality in the elderly male population. Endogenous sex steroids, along with environmental factors (notably diet) and host immune and inflammatory responses, are likely to cooperate in the pathogenesis of the disease. Based on the assumption that a complex endocrine–inflammatory-immune interaction is primarily implicated in human PCa, we have investigated the interplay between sex steroids and inflammation in development and growth of human PCa. To this end, we have assessed nine functional single nucleotide polymorphisms (SNP)s of five genes involved in sex hormone-related pathways in both hyperplastic and malignant human prostate tissues, as well as in matched controls and in a ‘‘supercontrol’’ group composed of male Sicilian centenarians. In particular, the following genes were investigated: AR-OMIM313700, SRD5A2-NM-000348, CYP19-NM-031226, ERS1-NM-001122742, ERS2-NM-001040276. A significant association with prostate cancer was found in seven out of the nine SNPs considered. Although this is a preliminary study and larger investigations are needed to confirm the role of these genes in PCa development and/or progression, our data might provide an experimental basis to develop additional or alternative strategies for prevention and treatment of PCa

    Multi-mode bosonic Gaussian channels

    Get PDF
    A complete analysis of multi-mode bosonic Gaussian channels is proposed. We clarify the structure of unitary dilations of general Gaussian channels involving any number of bosonic modes and present a normal form. The maximum number of auxiliary modes that is needed is identified, including all rank deficient cases, and the specific role of additive classical noise is highlighted. By using this analysis, we derive a canonical matrix form of the noisy evolution of n-mode bosonic Gaussian channels and of their weak complementary counterparts, based on a recent generalization of the normal mode decomposition for non-symmetric or locality constrained situations. It allows us to simplify the weak-degradability classification. Moreover, we investigate the structure of some singular multi-mode channels, like the additive classical noise channel that can be used to decompose a noisy channel in terms of a less noisy one in order to find new sets of maps with zero quantum capacity. Finally, the two-mode case is analyzed in detail. By exploiting the composition rules of two-mode maps and the fact that anti-degradable channels cannot be used to transfer quantum information, we identify sets of two-mode bosonic channels with zero capacity.Comment: 37 pages, 3 figures (minor editing), accepted for publication in New Journal of Physic

    The use ultrasound guided for refilling intrathecal baclofene pump in complicated clinical cases: A practical approach

    Get PDF
    Muscular spasticity due to neurological disorders is a heavy cause of severe pain and disability for many patients, compromising the independence and quality life. Baclofene is a good tool to guarantee patients independence and pain control. Anyway in chronic therapy oral treatment become unsatisfactory. In all these cases, intrathecal baclofen therapy (ITB), after sub fascial implantation of intrathecal pumps is used as an important long term treatment to reduce spasticity. After pump implantation the drug reservoir must be refilled periodically in order to maintain the reduction of spasticity and avoid the symptoms and signs of withdrawal. ITB refilling, which involves the insertion of a needle through the skin until the access port of the pump, is often hard, mainly due to the layer of abdominal fat, spasticity, suboptimal pump positioning, pump rotation or inversion, and scar formation over the implantation site. To avoid the difficulties of ITB refilling radiography or other invasive supportive examinations are sometimes needed. We reported here our experience and we suggest a simple method to use the ultrasound in refilling with particular attention to some cases with complications after implantation with a difficult approach in refilling. We used the ultrasound examination to identify the access port of her pump so as to avoid multiple needle punctures and infections and radiation exposition. Ultrasound-guided technique may facilitate ITB refill in technically challenging cases. With ultrasound ITB was easily detectable and was quite simple to identify the exact point of needle injection. In the last years different new applications for ultrasounds are emerging. In our opinion the use of Doppler ultrasounds in the study of muscles and nerves represent an emerging tool for the physician's neurological rehabilitation
    • 

    corecore