29 research outputs found
Residual Stresses in Machining of AISI 52100 Steel under Dry and Cryogenic Conditions: A Brief Summary
17th Conference on Material Forming (ESAFORM) - FinlandResidual stress is one of the most important surface integrity parameter that can significantly affect the service performance of a mechanical component, such as: contact fatigue, corrosion resistance and part distortion. For this reason the mechanical state of both the machined surface and subsurface needs to be investigated. Residual stress induced by dry and cryogenic machining of hardened AISI 52100 steel was determined by using the X-ray diffraction technique. The objective was to evaluate the influence of the tool cutting edge geometry, workpiece hardness, cutting speed, microstructural changes and cooling conditions on the distribution of the residual stresses in the machined surface layers. The results are analysed in function of the thermal and mechanical phenomena generated during machining and their consequences on the white layer formation
Finite Element Modeling of Microstructural Changes in Hard Machining of SAE 8620
Surface and subsurface microstructural characterization after machining operations is a topic of great interest for both academic and industrial research activities. This paper presents a newly developed finite element (FE) model able to describe microstructural evolution and dynamic recrystallization (DRX) during orthogonal hard machining of SAE 8620 steel. In particular, it predicts grain size and hardness variation by implementing a user subroutine involving a hardness-based flow stress and empirical models. The model is validated by comparing its output with the experimental results available in literature at varying the cutting speed, insert geometry and flank wear. The results show a good ability of the customized model to predict the thermo-mechanical and microstructural phenomena taking place during the selected processes
Plastic Strain Threshold Determination for White Layer Formation in Hard Turning of AISI 52100 Steel Using Micro-Grid Technique and Finite Element Simulations
White layer (WL) formation in metal cutting is generally found to have negative effects on the corrosion and fatigue life of machined components. Nowadays, the mechanism of the WL formation has not been understood very well, especially about the contribution of the thermal and mechanical loadings generated by the cutting process on WL formation. The relationship between subsurface plastic strain caused by mechanical loadings and the formation of WLs is of our concern. To address this issue, WL formation in hard turning of AISI 52100 under dry and cryogenic cooling conditions is investigated by subsurface plastic strain measurement using the micro-grid technique, observed by scanning electron microscope (SEM). Due to the considerable low temperature, WL is mainly generated by the mechanical effect rather than the thermal one, and this hypothesis is supported by physically based finite element method (FEM) simulations. From the investigations, we discover the existing plastic strain threshold, which governs the occurrence of WL in hard turning of AISI 52100 steel under cryogenic cooling conditions
Pelvic pain in reproductive age: US findings
Pelvic pain in reproductive age often represents a diagnostic challenge due to the variety of potential causes characterized by overlapping clinical symptoms, including gynecological and other disorders (e.g., entero-colic or urological). It is also necessary to determine if there is a possibility of pregnancy to rule out any related complications, such as ectopic pregnancy. Although ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI) are strongly integrated, the choice of which is the ideal diagnostic tool should be guided both by clinical suspicion (gynecological vs. non-gynecological cause) and by the risk ratio-benefit (ionizing radiation and instrumental costs), too. The didactic objective proposed by this review consists in the diagnosis of the cause and differential of pelvic pain in reproductive age by describing and critically analyzing the US diagnostic clues of the most frequent adnexal, uterine, and vascular causes
Relevance of gamma interferon, tumor necrosis factor alpha, and interleukin-10 gene polymorphisms to susceptibility to Mediterranean spotted fever.
The acute phase of Mediterranean spotted fever (MSF) is characterized by dramatic changes in cytokine production patterns, clearly indicating their role in the immunomodulation of the response against the microorganism, and the differences in cytokine production seem to influence the extent and severity of the disease. In this study, the single nucleotide polymorphisms (SNPs) of tumor necrosis factor alpha (TNF-α) -308G/A (rs1800629) and interleukin-10 (IL-10) -1087G/A (rs1800896), -824C/T (rs1800871), and -597C/A (rs1800872) and the gamma interferon (IFN-γ) T/A SNP at position +874 (rs2430561) were typed in 80 Sicilian patients affected by MSF and in 288 control subjects matched for age, gender, and geographic origin. No significant differences in TNF-α -308G/A genotype frequencies were observed. The +874TT genotype, associated with an increased production of IFN-γ, was found to be significantly less frequent in MSF patients than in the control group (odds ratio [OR], 0.18; 95% confidence interval [95% CI], 0.06 to 0.51; P corrected for the number of genotypes [Pc], 0.0021). In addition, when evaluating the IFN-γ and IL-10 genotype interaction, a significant increase of +874AA/-597CA (OR, 5.31; 95% CI, 2.37 to 11.88; Pc, 0.0027) combined genotypes was observed. In conclusion, our data strongly suggest that finely genetically tuned cytokine production may play a crucial role in the regulation of the immune response against rickettsial infection, therefore influencing the disease outcomes, ranging from nonapparent or subclinical condition to overt or fatal disease
Low TGF-β1 plasma levels are associated with cognitive decline in Down syndrome
Almost all individuals with Down's syndrome (DS) show the characteristic neuropathological features of Alzheimer's disease (AD) by the age of 40, yet not every individual with DS experiences symptoms of AD later in life. Similar to neurotypical developing subjects, AD in people with DS lasts for a long preclinical phase in which biomarkers follow a predictable order of changes. Hence, a prolonged asymptomatic period precedes the onset of dementia, underscoring the importance of identifying new biomarkers for the early detection and monitoring of cognitive decline in individuals with DS. Blood-based biomarkers may offer an alternative non-invasive strategy for the detection of peripheral biological alterations paralleling nervous system pathology in an early phase of the AD continuum. In the last few years, a strong neurobiological link has been demonstrated between the deficit of transforming growth factor-β1 (TGF-β1) levels, an anti-inflammatory cytokine endowed with neuroprotective activity, and early pro-inflammatory processes in the AD brain. In this clinical prospective observational study, we found significant lower plasma TGF-β1 concentrations at the first neuropsychological evaluation (baseline = T0) both in young adult DS individuals (19-35 years) and older DS subjects without AD (35-60 years) compared to age- and sex-matched healthy controls. Interestingly, we found that the lower TGF-β1 plasma concentrations at T0 were strongly correlated with the following cognitive decline at 12 months. In addition, in young individuals with DS, we found, for the first time, a negative correlation between low TGF-β1 concentrations and high TNF-α plasma concentrations, a pro-inflammatory cytokine that is known to be associated with cognitive impairment in DS individuals with AD. Finally, adopting an ex vivo approach, we found that TGF-β1 concentrations were reduced in parallel both in the plasma and in the peripheral blood mononuclear cells (PBMCs) of DS subjects, and interestingly, therapeutic concentrations of fluoxetine (FLX) applied to cultured PBMCs (1 µM for 24 h) were able to rescue TGF-β1 concentrations in the culture media from DS PBMCs, suggesting that FLX, a selective serotonin reuptake inhibitor (SSRI) endowed with neuroprotective activity, might rescue TGF-β1 concentrations in DS subjects at higher risk to develop cognitive decline.The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This project has been funded by the Italian Ministry of Health, grant no: GR-2019-12369983-Theory-enhancing and partially supported with funds by project no. 3 of Ricerca Corrente 2022-2024-Linea 4 of Oasi Research Institute-IRCCS, Troina, Italy, and by FONDO DI ATENEO PER LA RICERCA ANNO 2020, Department of Life Sciences, UNIMORE. FC’s Lab at the Oasi Research Institute is also supported by the European Union’s Horizon 2020 research and innovation program under the grant agreement no. 899986 (ICOD)
Association between preoperative evaluation with lung ultrasound and outcome in frail elderly patients undergoing orthopedic surgery for hip fractures: study protocol for an Italian multicenter observational prospective study (LUSHIP)
Hip fracture is one of the most common orthopedic causes of hospital admission in frail elderly patients. Hip fracture fixation in this class of patients is considered a high-risk procedure. Preoperative physical examination, plasma natriuretic peptide levels (BNP, Pro-BNP), and cardiovascular scoring systems (ASA-PS, RCRI, NSQIP-MICA) have all been demonstrated to underestimate the risk of postoperative complications. We designed a prospective multicenter observational study to assess whether preoperative lung ultrasound examination can predict better postoperative events thanks to the additional information they provide in the form of "indirect" and "direct" cardiac and pulmonary lung ultrasound signs
Mechanisrns and modeling of white and dark layersı formation in hard machining of AISI 52100 steels
Scuola di Dottorato "Pitagora" in Scienze Ingegneristiche, Dottorato di Ricerca in Ingegneria Meccanica, XXIV Ciclo,a.a. 2010-2011UniversitĂ della Calabri
Finite Element Modeling of Microstructural Changes in Hard Machining of SAE 8620
Surface and subsurface microstructural characterization after machining operations is a topic of great interest for both academic and industrial research activities. This paper presents a newly developed finite element (FE) model able to describe microstructural evolution and dynamic recrystallization (DRX) during orthogonal hard machining of SAE 8620 steel. In particular, it predicts grain size and hardness variation by implementing a user subroutine involving a hardness-based flow stress and empirical models. The model is validated by comparing its output with the experimental results available in literature at varying the cutting speed, insert geometry and flank wear. The results show a good ability of the customized model to predict the thermo-mechanical and microstructural phenomena taking place during the selected processes