63 research outputs found

    Simulation of noise-assisted transport via optical cavity networks

    Full text link
    Recently, the presence of noise has been found to play a key role in assisting the transport of energy and information in complex quantum networks and even in biomolecular systems. Here we propose an experimentally realizable optical network scheme for the demonstration of the basic mechanisms underlying noise-assisted transport. The proposed system consists of a network of coupled quantum optical cavities, injected with a single photon, whose transmission efficiency can be measured. Introducing dephasing in the photon path this system exhibits a characteristic enhancement of the transport efficiency that can be observed with presently available technology.Comment: 8 pages, 7 figures. New version with more detail

    Cancer patient-centered home care: a new model for health care in oncology

    Get PDF
    Patient-centered home care is a new model of assistance, which may be integrated with more traditional hospital-centered care especially in selected groups of informed and trained patients. Patient-centered care is based on patients’ needs rather than on prognosis, and takes into account the emotional and psychosocial aspects of the disease. This model may be applied to elderly patients, who present comorbid diseases, but it also fits with the needs of younger fit patients. A specialized multidisciplinary team coordinated by experienced medical oncologists and including pharmacists, psychologists, nurses, and social assistance providers should carry out home care. Other professional figures may be required depending on patients’ needs. Every effort should be made to achieve optimal coordination between the health professionals and the reference hospital and to employ shared evidence-based guidelines, which in turn guarantee safety and efficacy. Comprehensive care has to be easily accessible and requires a high level of education and knowledge of the disease for both the patients and their caregivers. Patient-centered home care represents an important tool to improve quality of life and help cancer patients while also being cost effective

    Microfluidics as a Novel Tool for Biological and Toxicological Assays in Drug Discovery Processes: Focus on Microchip Electrophoresis

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.The last decades of biological, toxicological, and pharmacological research have deeply changed the way researchers select the most appropriate ‘pre-clinical model’. The absence of relevant animal models for many human diseases, as well as the inaccurate prognosis coming from ‘conventional’ pre-clinical models, are among the major reasons of the failures observed in clinical trials. This evidence has pushed several research groups to move more often from a classic cellular or animal modeling approach to an alternative and broader vision that includes the involvement of microfluidic-based technologies. The use of microfluidic devices offers several benefits including fast analysis times, high sensitivity and reproducibility, the ability to quantitate multiple chemical species, and the simulation of cellular response mimicking the closest human in vivo milieu. Therefore, they represent a useful way to study drug–organ interactions and related safety and toxicity, and to model organ development and various pathologies ‘in a dish’. The present review will address the applicability of microfluidic-based technologies in different systems (2D and 3D). We will focus our attention on applications of microchip electrophoresis (ME) to biological and toxicological studies as well as in drug discovery and development processes. These include high-throughput single-cell gene expression profiling, simultaneous determination of antioxidants and reactive oxygen and nitrogen species, DNA analysis, and sensitive determination of neurotransmitters in biological fluids. We will discuss new data obtained by ME coupled to laser-induced fluorescence (ME-LIF) and electrochemical detection (ME-EC) regarding the production and degradation of nitric oxide, a fundamental signaling molecule regulating virtually every critical cellular function. Finally, the integration of microfluidics with recent innovative technologies—such as organoids, organ-on-chip, and 3D printing—for the design of new in vitro experimental devices will be presented with a specific attention to drug development applications. This ‘composite’ review highlights the potential impact of 2D and 3D microfluidic systems as a fast, inexpensive, and highly sensitive tool for high-throughput drug screening and preclinical toxicological studies.Italian Ministry of Health Research Program 2018 (2635256)American Heart Association-Midwest Affiliate Postdoctoral Research Fellowship (NFP0075515)Italian Ministry of Economic Development (F/200110/02/X45)Italian Ministry of EducationNIH COBRE P20GM103638Oasi Research Institute—IRCC

    Systematic modeling of electrostatics, transport, and statistical variability effects of interface traps in end-of-the-roadmap III–V MOSFETs

    Get PDF
    Thanks to their superior transport properties, indium gallium arsenide (InGaAs) metal-oxide-semiconductor field-effect transistors (MOSFETs) constitute an alternative to conventional silicon MOSFETs for digital applications at ultrascaled nodes. The successful integration of this technology is challenged mainly by the high defect density in the gate oxide and at the interface with the semiconductor channel, which degrades the electrostatics and could limit the potential benefits over Si. In this work, we: 1) establish a systematic modeling approach to evaluate the performance degradation due to interface traps in terms of electrostatics and transport of InGaAs dual-gate ultrathin body (DG-UTB) FETs and 2) investigate the effects of random interface-trap concentration as another roadblock to the scaling of the technology, due to statistical variability of the threshold voltage. Variability is assessed with a Technology CAD (TCAD) simulator calibrated against multi-subband Monte Carlo (MSMC) simulations. The modeling approach overcomes the TCAD limitations when dealing with ultrathin channels (i.e., below 5 nm) without altering crucial geometrical parameters that would compromise the dependability of the variability analysis. Our results indicate that interface-trap fluctuation becomes comparable with the other variability sources dominating the total variability when shrinking the device dimensions, thus contrasting the trend of reduced variability with scaling. This, in turn, implies that interface and border traps may strongly limit the benefits of InGaAs over Silicon if not effectively reduced by gate process optimization

    Radiomics analysis in gastrointestinal imaging: a narrative review

    Get PDF
    Background and Objective: To present an overview of radiomics radiological applications in major gastrointestinal oncological non-oncologic diseases, such as colorectal cancer, pancreatic cancer, gastro- oesophageal cancer, gastrointestinal stromal tumor (GIST), hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and non-oncologic diseases, such as liver fibrosis, nonalcoholic steatohepatitis, and inflammatory bowel disease. Methods: A search of PubMed databases was performed for the terms “radiomic”, “radiomics”, “liver”, “small bowel”, “colon”, “GI tract”, and “gastrointestinal imaging” for English articles published between January 2013 and July 2022. A narrative review was undertaken to summarize literature pertaining to application of radiomics in major oncological and non-oncological gastrointestinal diseases. The strengths and limitation of radiomics, as well as advantages and major limitations and providing considerations for future development of radiomics were discussed. Key Content and Findings: Radiomics consists in extracting and analyzing a vast amount of quantitative features from medical datasets, Radiomics refers to the extraction and analysis of large amounts of quantitative features from medical images. The extraction of these data, integrated with clinical data, allows the construction of descriptive and predictive models that can build disease-specific radiomic signatures. Texture analysis has emerged as one of the most important biomarkers able to assess tumor heterogeneity and can provide microscopic image information that cannot be identified with the naked eye by radiologists. Conclusions: Radiomics and texture analysis are currently under active investigation in several institutions worldwide, this approach is being tested in a multitude of anatomical areas and diseases, with the final aim to exploit personalized medicine in diagnosis, treatment planning, and prediction of outcomes. Despite promising initial results, the implementation of radiomics is still hampered by some limitations related to the lack of standardization and validation of image acquisition protocols, feature segmentation, data extraction, processing, and analysi

    Modulation of Pro-Oxidant and Pro-Inflammatory Activities of M1 Macrophages by the Natural Dipeptide Carnosine

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Carnosine is a natural endogenous dipeptide widely distributed in mammalian tissues, existing at particularly high concentrations in the muscles and brain and possesses well-characterized antioxidant and anti-inflammatory activities. In an in vitro model of macrophage activation, induced by lipopolysaccharide + interferon-gamma (LPS + IFN-γ), we here report the ability of carnosine to modulate pro-oxidant and pro-inflammatory activities of macrophages, representing the primary cell type that is activated as a part of the immune response. An ample set of parameters aimed to evaluate cytotoxicity (MTT assay), energy metabolism (HPLC), gene expressions (high-throughput real-time PCR (qRT-PCR)), protein expressions (western blot) and nitric oxide production (qRT-PCR and HPLC), was used to assess the effects of carnosine on activated macrophages challenged with a non cytotoxic LPS (100 ng/mL) + IFN-γ (600 U/mL) concentration. In our experimental model, main carnosine beneficial effects were: (1) the modulation of nitric oxide production and metabolism; (2) the amelioration of the macrophage energy state; (3) the decrease of the expressions of pro-oxidant enzymes (Nox-2, Cox-2) and of the lipid peroxidation product malondialdehyde; (4) the restoration and/or increase of the expressions of antioxidant enzymes (Gpx1, SOD-2 and Cat); (5) the increase of the transforming growth factor-β1 (TGF-β1) and the down-regulation of the expressions of interleukins 1β and 6 (IL-1β and IL-6) and 6) the increase of the expressions of Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1). According to these results carnosine is worth being tested in the treatment of diseases characterized by elevated levels of oxidative stress and inflammation (atherosclerosis, cancer, depression, metabolic syndrome, and neurodegenerative diseases)

    Carnosine Protects Macrophages against the Toxicity of Aβ1-42 Oligomers by Decreasing Oxidative Stress

    Get PDF
    Carnosine (β-alanyl-L-histidine) is a naturally occurring endogenous peptide widely distributed in excitable tissues such as the brain. This dipeptide has well-known antioxidant, anti-inflammatory, and anti-aggregation activities, and it may be useful for treatment of neurodegenerative disorders such as Alzheimer’s disease (AD). In this disease, peripheral infiltrating macrophages play a substantial role in the clearance of amyloid beta (Aβ) peptides from the brain. Correspondingly, in patients suffering from AD, defects in the capacity of peripheral macrophages to engulf Aβ have been reported. The effects of carnosine on macrophages and oxidative stress associated with AD are consequently of substantial interest for drug discovery in this field. In the present work, a model of stress induced by Aβ1-42 oligomers was investigated using a combination of methods including trypan blue exclusion, microchip electrophoresis with laser-induced fluorescence, flow cytometry, fluorescence microscopy, and high-throughput quantitative real-time PCR. These assays were used to assess the ability of carnosine to protect macrophage cells, modulate oxidative stress, and profile the expression of genes related to inflammation and pro- and antioxidant systems. We found that pre-treatment of RAW 264.7 macrophages with carnosine counteracted cell death and apoptosis induced by Aβ1-42 oligomers by decreasing oxidative stress as measured by levels of intracellular nitric oxide (NO)/reactive oxygen species (ROS) and production of peroxynitrite. This protective activity of carnosine was not mediated by modulation of the canonical inflammatory pathway but instead can be explained by the well-known antioxidant and free-radical scavenging activities of carnosine, enhanced macrophage phagocytic activity, and the rescue of fractalkine receptor CX3CR1. These new findings obtained with macrophages challenged with Aβ1-42 oligomers, along with the well-known multimodal mechanism of action of carnosine in vitro and in vivo, substantiate the therapeutic potential of this dipeptide in the context of AD pathology

    Carnosine Decreases PMA-Induced Oxidative Stress and Inflammation in Murine Macrophages

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Carnosine is an endogenous dipeptide composed of β-alanine and L-histidine. This naturally occurring molecule is present at high concentrations in several mammalian excitable tissues such as muscles and brain, while it can be found at low concentrations in a few invertebrates. Carnosine has been shown to be involved in different cellular defense mechanisms including the inhibition of protein cross-linking, reactive oxygen and nitrogen species detoxification as well as the counteraction of inflammation. As a part of the immune response, macrophages are the primary cell type that is activated. These cells play a crucial role in many diseases associated with oxidative stress and inflammation, including atherosclerosis, diabetes, and neurodegenerative diseases. In the present study, carnosine was first tested for its ability to counteract oxidative stress. In our experimental model, represented by RAW 264.7 macrophages challenged with phorbol 12-myristate 13-acetate (PMA) and superoxide dismutase (SOD) inhibitors, carnosine was able to decrease the intracellular concentration of superoxide anions (O2−•) as well as the expression of Nox1 and Nox2 enzyme genes. This carnosine antioxidant activity was accompanied by the attenuation of the PMA-induced Akt phosphorylation, the down-regulation of TNF-α and IL-6 mRNAs, and the up-regulation of the expression of the anti-inflammatory mediators IL-4, IL-10, and TGF-β1. Additionally, when carnosine was used at the highest dose (20 mM), there was a generalized amelioration of the macrophage energy state, evaluated through the increase both in the total nucleoside triphosphate concentrations and the sum of the pool of intracellular nicotinic coenzymes. Finally, carnosine was able to decrease the oxidized (NADP+)/reduced (NADPH) ratio of nicotinamide adenine dinucleotide phosphate in a concentration dependent manner, indicating a strong inhibitory effect of this molecule towards the main source of reactive oxygen species in macrophages. Our data suggest a multimodal mechanism of action of carnosine underlying its beneficial effects on macrophage cells under oxidative stress and inflammation conditions

    The importance of a taste. A comparative study on wild food plant consumption in twenty-one local communities in Italy

    Get PDF
    A comparative food ethnobotanical study was carried out in twenty-one local communities in Italy, fourteen of which were located in Northern Italy, one in Central Italy, one in Sardinia, and four in Southern Italy. 549 informants were asked to name and describe food uses of wild botanicals they currently gather and consume. Data showed that gathering, processing and consuming wild food plants are still important activities in all the selected areas. A few botanicals were quoted and cited in multiple areas, demonstrating that there are ethnobotanical contact points among the various Italian regions (Asparagus acutifolius, Reichardia picroides, Cichorium intybus, Foeniculum vulgare, Sambucus nigra, Silene vulgaris, Taraxacum officinale, Urtica dioica, Sonchus and Valerianella spp.). One taxon (Borago officinalis) in particular was found to be among the most quoted taxa in both the Southern and the Northern Italian sites

    Measurement of the residual energy of muons in the Gran Sasso underground Laboratories

    Full text link
    The MACRO detector was located in the Hall B of the Gran Sasso underground Laboratories under an average rock overburden of 3700 hg/cm^2. A transition radiation detector composed of three identical modules, covering a total horizontal area of 36 m^2, was installed inside the empty upper part of the detector in order to measure the residual energy of muons. This paper presents the measurement of the residual energy of single and double muons crossing the apparatus. Our data show that double muons are more energetic than single ones. This measurement is performed over a standard rock depth range from 3000 to 6500 hg/cm^2.Comment: 28 pages, 9 figure
    • …
    corecore