54 research outputs found

    Casimir force on a piston

    Full text link
    We consider a massless scalar field obeying Dirichlet boundary conditions on the walls of a two-dimensional L x b rectangular box, divided by a movable partition (piston) into two compartments of dimensions a x b and (L-a) x b. We compute the Casimir force on the piston in the limit L -> infinity. Regardless of the value of a/b, the piston is attracted to the nearest end of the box. Asymptotic expressions for the Casimir force on the piston are derived for a << b and a >> b.Comment: 10 pages, 1 figure. Final version, accepted for publication in Phys. Rev.

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset

    Static correlation and electron localization in molecular dimers from the self-consistent RPA and GW approximation

    Get PDF
    We investigate static correlation and delocalization errors in the self-consistent GW and random-phase approximation (RPA) by studying molecular dissociation of the H2 and LiH molecules. Although both approximations contain topologically identical diagrams, the nonlocality and frequency dependence of the GW self-energy crucially influence the different energy contributions to the total energy as compared to the use of a static local potential in the RPA. The latter leads to significantly larger correlation energies, which allow for a better description of static correlation at intermediate bond distances. The substantial error found in GW is further analyzed by comparing spin-restricted and spin-unrestricted calculations. At large but finite nuclear separation, their difference gives an estimate of the so-called fractional spin error normally determined only in the dissociation limit. Furthermore, a calculation of the dipole moment of the LiH molecule at dissociation reveals a large delocalization error in GWmaking the fractional charge error comparable to the RPA. The analyses are supplemented by explicit formulas for the GW Green's function and total energy of a simplified two-level model providing additional insights into the dissociation limit.Peer reviewe

    Character displacement among bat-pollinated flowers of the genus Burmeistera: analysis of mechanism, process and pattern

    No full text
    Coexisting plants that share pollinators can compete through interspecific pollen transfer. A long-standing idea holds that divergence in floral morphology may reduce this competition by placing pollen on different regions of the pollinator's bodies. However, surprisingly little empirical support for this idea exists. Burmeistera is a diverse neotropical genus that exhibits wide interspecific variation in the degree to which the reproductive parts are exserted outside the corolla. Coexisting Burmeistera share bats as their primary pollinators, and the degree of exsertion determines the site of pollen deposition on the bats' heads. Here we study the mechanism, process and pattern of floral character displacement for assemblages of coexisting Burmeistera. Flight cage experiments with bats and pairs of Burmeistera species demonstrate that the greater the divergence in exsertion length, the less pollen transferred interspecifically. Null model analyses of exsertion lengths for 19 species of Burmeistera across 18 sites (each containing two to four species) demonstrate that observed assemblage structure is significantly overdispersed relative to what would be expected by chance. Local evolution, rather than ecological sorting, appears to be the primary process driving this pattern of overdispersion because local adaptation of the nine widespread species accounts for a large portion of the observed pattern. Taken together, results of this study provide strong support for the idea that competition through interspecific pollen transfer can drive character displacement in plants
    • 

    corecore