483 research outputs found

    Serial Killing of Tumor Cells by Human Natural Killer Cells – Enhancement by Therapeutic Antibodies

    Get PDF
    BACKGROUND: Natural killer cells are an important component of the innate immune system. Anti-cancer therapies utilizing monoclonal antibodies also rely on the cytotoxicity of NK cells for their effectiveness. Here, we study the dynamics of NK cell cytotoxicity. METHODOLOGY/PRINCIPAL FINDINGS: We observe that IL-2 activated human NK cells can serially hit multiple targets. Using functional assays, we demonstrate that on an average, a single IL-2 activated NK cell can kill four target cells. Data using live video microscopy suggest that an individual NK cell can make serial contacts with multiple targets and majority of contacts lead to lysis of target cells. Serial killing is associated with a loss of Perforin and Granzyme B content. A large majority of NK cells survive serial killing, and IL-2 can replenish their granular stock and restore the diminished cytotoxicity of ‘exhausted’ NK cells. IL-2 and IL-15 are equally effective in enhancing the killing frequency of resting NK cells. Significantly, Rituximab, a therapeutic monoclonal antibody increases the killing frequency of both resting and IL-2 activated NK cells. CONCLUSION/SIGNIFICANCE: Our data suggest that NK cell-based therapies for overcoming tumors rely on their serial killing ability. Therefore, strategies augmenting the killing ability of NK cells can boost the immune system and enhance the effectiveness of monoclonal antibody-based therapies

    Interspecific pairwise relationships among body size, clutch size and latitude: deconstructing a macroecological triangle in birds

    Get PDF
    A large body of research dating back to the 19th century has shown evidence for consistent relationships between ecological variables across geographical space ABSTRACT Aim Ecogeographical 'rules', large-scale patterns in ecological variables across geographical space, can provide important insights into the mechanisms of evolution and ecological assembly. However, interactions between rules could obscure both the observation of large-scale patterns and their interpretation. Here, we examine a system of three variables interrelated by ecogeographical rules -the latitudinal increase in body size within closely related homeotherms (Bergmann's rule), the negative allometry of clutch size (Calder's rule) and the latitudinal increase in clutch size (Lack's rule) -in a global dataset of birds. Location Global. Methods We used linear regressions and meta-analysis techniques to quantify the three rules across clades and through the taxonomic hierarchy. Path analysis was used to quantify interactions between rules at multiple taxonomic levels, as a function of both phylogenetic inheritance of traits and indirect feedbacks between the three rules. Independent contrasts analyses were performed on four clades with available phylogenies, and the taxonomic partitioning of variation in each trait was quantified. Results Standardizing across all clades, Lack's and Bergmann's rules were supported at all taxonomic levels, with Calder's rule being supported at the order level. Lack's rule was consistently stronger and more often detected than the other two rules. Path analysis showed that the indirect effects often outweighed the direct effects of Calder's rule at the genus level and Bergmann's rule at the order level. Strong interactions between Calder's and Bergmann's rules led to a trade-off between the rules depending on taxonomic resolution. Main conclusions We found strong interactions between Bergmann's, Lack's and Calder's rules in birds, and these interactions varied in strength and direction over the taxonomic hierarchy and among avian clades. Ecogeographical rules may be masked by feedbacks from other, correlated variables, even when the underlying selective mechanism is operating. The apparently conflicting pairwise relationships among clutch size, body size and latitude illustrate the difficulty of interpreting individual pairwise correlations without recognition of interdependence with other variables

    Opposite role of Bax and BCL-2 in the anti-tumoral responses of the immune system

    Get PDF
    BACKGROUND: The relative role of anti apoptotic (i.e. Bcl-2) or pro-apoptotic (e.g. Bax) proteins in tumor progression is still not completely understood. METHODS: The rat glioma cell line A15A5 was stably transfected with human Bcl-2 and Bax transgenes and the viability of theses cell lines was analyzed in vitro and in vivo. RESULTS: In vitro, the transfected cell lines (huBax A15A5 and huBcl-2 A15A5) exhibited different sensitivities toward apoptotic stimuli. huBax A15A5 cells were more sensitive and huBcl-2 A15A5 cells more resistant to apoptosis than mock-transfected A15A5 cells (pCMV A15A5). However, in vivo, in syngenic rat BDIX, these cell lines behaved differently, as no tumor growth was observed with huBax A15A5 cells while huBcl-2 A15A5 cells formed large tumors. The immune system appeared to be involved in the rejection of huBax A15A5 cells since i) huBax A15A5 cells were tumorogenic in nude mice, ii) an accumulation of CD8+ T-lymphocytes was observed at the site of injection of huBax A15A5 cells and iii) BDIX rats, which had received huBax A15A5 cells developed an immune protection against pCMV A15A5 and huBcl-2 A15A5 cells. CONCLUSIONS: We show that the expression of Bax and Bcl-2 controls the sensitivity of the cancer cells toward the immune system. This sensitization is most likely to be due to an increase in immune induced cell death and/or the amplification of an anti tumour immune respons

    Expanded NK cells from umbilical cord blood and adult peripheral blood combined with daratumumab are effective against tumor cells from multiple myeloma patients

    Get PDF
    In this study we evaluated the potential of expanded NK cells (eNKs) from two sources combined with the mAbs daratumumab and pembrolizumab to target primary multiple myeloma (MM) cells ex vivo. In order to ascertain the best source of NK cells, we expanded and activated NK cells from peripheral blood (PB) of healthy adult donors and from umbilical cord blood (UCB). The resulting expanded NK (eNK) cells express CD16, necessary for carrying out antibody-dependent cellular cytotoxicity (ADCC). Cytotoxicity assays were performed on bone marrow aspirates of 18 MM patients and 4 patients with monoclonal gammopathy of undetermined significance (MGUS). Expression levels of PD-1 on eNKs and PD-L1 on MM and MGUS cells were also quantified. Results indicate that most eNKs obtained using our expansion protocol express a low percentage of PD-1+ cells. UCB eNKs were highly cytotoxic against MM cells and addition of daratumumab or pembrolizumab did not further increase their cytotoxicity. PB eNKs, while effective against MM cells, were significantly more cytotoxic when combined with daratumumab. In a minority of cases, eNK cells showed a detectable population of PD1+ cells. This correlated with low cytotoxic activity, particularly in UCB eNKs. Addition of pembrolizumab did not restore their activity. Results indicate that UCB eNKs are to be preferentially used against MM in the absence of daratumumab while PB eNKs have significant cytotoxic advantage when combined with this mAb

    Versatile thiol-based reactions for micrometer- and nanometer-scale photopatterning of polymers and biomolecules

    Get PDF
    Thiol-based chemistry provides a mild and versatile tool for surface functionalization. In the present work, mercaptosilane films were patterned by utilizing UV-induced photo-oxidation of the thiol to yield sulfonate groups via contact and interferometric lithography (IL). These photo-generated sulfonic acid groups were used for selective immobilization of amino-functionalized molecules after activation with triphenylphosphine ditriflate (TPPDF). Moreover, protein-resistant poly(oligoethyleneglycolmethacrylate) (POEGMA) brushes were grown from the intact thiol groups by a surface-induced polymerization reaction. Exploiting both reactions it is possible to couple amino-labelled nitrilotriacetic acid (NH2-NTA) to sulfonate-functionalized regions, enabling the site-specific binding of green fluorescent protein (GFP) to regions defined lithographically, while exploiting the protein-resistant character of POEGMA brushes to prevent non-specific protein adsorption to previously masked areas. The outstanding reactivity of thiol groups paves the way towards novel strategies for the fabrication of complex protein nanopatterns beyond thiol–ene chemistry

    Rituximab Treatment in Hepatitis C Infection: An In Vitro Model to Study the Impact of B Cell Depletion on Virus Infectivity

    Get PDF
    Hepatitis C virus (HCV) infected patients with vasculitis are often treated with the B-cell-depleting anti-CD20 antibody rituximab. Treatment reduces the cryoglobulins that cause vasculitis, yet it also leads to a transient increase in liver enzymes and HCV genomic RNA in the periphery. The mechanism underlying the increased viral load is unclear and both direct and indirect roles have been proposed for B cells in HCV infection. We previously reported that HCV can associate with B cells and can trans-infect hepatocytes. We established an in vitro assay to study the effect(s) of rituximab on B cell-associated HCV infectivity. Rituximab-mediated lysis of B cells in vitro increases the level of infectious HCV released from B cells. Our results, using a model where virus does not replicate in B cells, recapitulate observations seen in patients and may explain in part the rapid increase in blood HCV RNA observed after rituximab treatment

    Bim and Bmf synergize to induce apoptosis in Neisseria gonorrhoeae infection

    Get PDF
    Abstract: Bcl-2 family proteins including the pro-apoptotic BH3-only proteins are central regulators of apoptotic cell death. Here we show by a focused siRNA miniscreen that the synergistic action of the BH3-only proteins Bim and Bmf is required for apoptosis induced by infection with Neisseria gonorrhoeae (Ngo). While Bim and Bmf were associated with the cytoskeleton of healthy cells, they both were released upon Ngo infection. Loss of Bim and Bmf from the cytoskeleton fraction required the activation of Jun-N-terminal kinase-1 (JNK-1), which in turn depended on Rac-1. Depletion and inhibition of Rac-1, JNK-1, Bim, or Bmf prevented the activation of Bak and Bax and the subsequent activation of caspases. Apoptosis could be reconstituted in Bim-depleted and Bmf-depleted cells by additional silencing of antiapoptotic Mcl-1 and Bcl-XL, respectively. Our data indicate a synergistic role for both cytoskeletal-associated BH3-only proteins, Bim, and Bmf, in an apoptotic pathway leading to the clearance of Ngo-infected cells. Author Summary: A variety of physiological death signals, as well as pathological insults, trigger apoptosis, a genetically programmed form of cell death. Pathogens often induce host cell apoptosis to establish a successful infection. Neisseria gonorrhoeae (Ngo), the etiological agent of the sexually transmitted disease gonorrhoea, is a highly adapted obligate human-specific pathogen and has been shown to induce apoptosis in infected cells. Here we unveil the molecular mechanisms leading to apoptosis of infected cells. We show that Ngo-mediated apoptosis requires a special subset of proapoptotic proteins from the group of BH3-only proteins. BH3-only proteins act as stress sensors to translate toxic environmental signals to the initiation of apoptosis. In a siRNA-based miniscreen, we found Bim and Bmf, BH3-only proteins associated with the cytoskeleton, necessary to induce host cell apoptosis upon infection. Bim and Bmf inactivated different inhibitors of apoptosis and thereby induced cell death in response to infection. Our data unveil a novel pathway of infection-induced apoptosis that enhances our understanding of the mechanism by which BH3-only proteins control apoptotic cell death
    • 

    corecore