34,838 research outputs found
Staticity Theorem for Higher Dimensional Generalized Einstein-Maxwell System
We derive formulas for variations of mass, angular momentum and canonical
energy in Einstein (n-2)-gauge form field theory by means of the ADM formalism.
Considering the initial data for the manifold with an interior boundary which
has the topology of (n-2)-sphere we obtained the generalized first law of black
hole thermodynamics. Supposing that a black hole evevt horizon comprisesw a
bifurcation Killing horizon with a bifurcate surface we find that the solution
is static in the exterior world, when the Killing timelike vector field is
normal to the horizon and has vanishing electric or magnetic fields on static
slices.Comment: 10 pages, REVTEX, to published in Phys.Rev. D1
Experimental study of ion heating and acceleration during magnetic reconnection
Ion heating and acceleration has been studied in the well-characterized reconnection layer of the Magnetic Reconnection Experiment [M. Yamada , Phys. Plasmas 4, 1936 (1997)]. Ion temperature in the layer rises substantially during null-helicity reconnection in which reconnecting field lines are anti-parallel. The plasma outflow is sub-Alfvenic due to a downstream back pressure. An ion energy balance calculation based on the data and including classical viscous heating indicates that ions are heated largely via nonclassical mechanisms. The T-i rise is much smaller during co-helicity reconnection in which field lines reconnect obliquely. This is consistent with a slower reconnection rate and a smaller resistivity enhancement over the Spitzer value. These observations show that nonclassical dissipation mechanisms can play an important role both in heating the ions and in facilitating the reconnection process
Covariant Vortex In Superconducting-Superfluid-Normal Fluid Mixtures with Stiff Equation of State
The integrals of motion for a cylindrically symmetric stationary vortex are
obtained in a covariant description of a mixture of interacting
superconductors, superfluids and normal fluids. The relevant integrated
stress-energy coefficients for the vortex with respect to a vortex-free
reference state are calculated in the approximation of a ``stiff'', i.e. least
compressible, relativistic equation of state for the fluid mixture. As an
illustration of the foregoing general results, we discuss their application to
some of the well known examples of ``real'' superfluid and superconducting
systems that are contained as special cases. These include Landau's two-fluid
model, uncharged binary superfluid mixtures, rotating conventional
superconductors and the superfluid neutron-proton-electron plasma in the outer
core of neutron stars.Comment: 14 pages, uses RevTeX and amssymb, submitte
Saturated laser fluorescence in turbulent sooting flames at high pressure
The primary objective was to develop a quantitative, single pulse, laser-saturated fluorescence (LSF) technique for measurement of radical species concentrations in practical flames. The species of immediate interest was the hydroxyl radical. Measurements were made in both turbulent premixed diffusion flames at pressures between 1 and 20 atm. Interferences from Mie scattering were assessed by doping with particles or by controlling soot loading through variation of equivalence ratio and fuel type. The efficacy of the LSF method at high pressure was addressed by comparing fluorescence and adsorption measurements in a premixed, laminar flat flame at 1-20 atm. Signal-averaging over many laser shots is sufficient to determine the local concentration of radical species in laminar flames. However, for turbulent flames, single pulse measurements are more appropriate since a statistically significant number of laser pulses is needed to determine the probability function (PDF). PDFs can be analyzed to give true average properties and true local kinetics in turbulent, chemically reactive flows
Spinning BTZ Black Hole versus Kerr Black Hole : A Closer Look
By applying Newman's algorithm, the AdS_3 rotating black hole solution is
``derived'' from the nonrotating black hole solution of Banados, Teitelboim,
and Zanelli (BTZ). The rotating BTZ solution derived in this fashion is given
in ``Boyer-Lindquist-type'' coordinates whereas the form of the solution
originally given by BTZ is given in a kind of an ``unfamiliar'' coordinates
which are related to each other by a transformation of time coordinate alone.
The relative physical meaning between these two time coordinates is carefully
studied. Since the Kerr-type and Boyer-Lindquist-type coordinates for rotating
BTZ solution are newly found via Newman's algorithm, next, the transformation
to Kerr-Schild-type coordinates is looked for. Indeed, such transformation is
found to exist. And in this Kerr-Schild-type coordinates, truely maximal
extension of its global structure by analytically continuing to ``antigravity
universe'' region is carried out.Comment: 17 pages, 1 figure, Revtex, Accepted for publication in Phys. Rev.
How ripples turn into dots: modeling ion-beam erosion under oblique incidence
Pattern formation on semiconductor surfaces induced by low energetic ion-beam
erosion under normal and oblique incidence is theoretically investigated using
a continuum model in form of a stochastic, nonlocal, anisotropic
Kuramoto-Sivashinsky equation. Depending on the size of the parameters this
model exhibits hexagonally ordered dot, ripple, less regular and even rather
smooth patterns. We investigate the transitional behavior between such states
and suggest how transitions can be experimentally detected.Comment: 11 pages, 4 figures, submitted for publication, revised versio
Structural Covariance in the Hard Sphere Fluid
We study the joint variability of structural information in a hard sphere
fluid biased to avoid crystallisation and form fivefold symmetric geometric
motifs. We show that the structural covariance matrix approach, originally
proposed for on-lattice liquids [Ronceray and Harrowell, JCP 2016], can be
meaningfully employed to understand structural relationships between different
motifs and can predict, within the linear-response regime, structural changes
related to motifs distinct from that used to bias the system
The generic character table of a Sylow -subgroup of a finite Chevalley group of type
Let be a Sylow -subgroup of the finite Chevalley group of type
over the field of elements, where is a power of a prime . We
describe a construction of the generic character table of
- …