4,881 research outputs found

    Climate trends of the North American prairie pothole region 1906–2000

    Get PDF
    The Prairie Pothole Region (PPR) is unique to North America. Its millions of wetlands and abundant ecosystem goods and services are highly sensitive to wide variations of temperature and precipitation in time and space characteristic of a strongly continental climate. Precipitation and temperature gradients across the PPR are orthogonal to each other. Precipitation nearly triples from west to east from approximately 300 mm/year to 900 mm/year, while mean annual temperature ranges from approximately 1â—¦C in the north to nearly 10â—¦C in the south. Twentieth-century weather records for 18 PPR weather stations representing 6 ecoregions revealed several trends. The climate generally has been getting warmer and wetter and the diurnal temperature range has decreased. Minimum daily temperatures warmed by 1.0â—¦C, while maximum daily temperatures cooled by 0.15â—¦C. Minimum temperature warmed more in winter than in summer, while maximum temperature cooled in summer and warmed in winter. Average annual precipitation increased by 49 mm or 9%. Palmer Drought Severity Index (PDSI) trends reflected increasing moisture availability for most weather stations; however, several stations in the western Canadian Prairies recorded effectively drier conditions. The east-west moisture gradient steepened during the twentieth century with stations in the west becoming drier and stations in the east becoming wetter. If the moisture gradient continues to steepen, the area of productive wetland ecosystems will shrink. Consequences for wetlands would be especially severe if the future climate does not provide supplemental moisture to offset higher evaporative demand

    Non-linear responses of glaciated prairie wetlands to climate warming

    Get PDF
    The response of ecosystems to climate warming is likely to include threshold events when small changes in key environmental drivers produce large changes in an ecosystem. Wetlands of the Prairie Pothole Region (PPR) are especially sensitive to climate variability, yet the possibility that functional changes may occur more rapidly with warming than expected has not been examined or modeled. The productivity and biodiversity of these wetlands are strongly controlled by the speed and completeness of a vegetation cover cycle driven by the wet and dry extremes of climate. Two thresholds involving duration and depth of standing water must be exceeded every few decades or so to complete the cycle and to produce highly functional wetlands. Model experiments at 19 weather stations employing incremental warming scenarios determined that wetland function across most of the PPR would be diminished beyond a climate warming of about 1.5–2.0 °C, a critical temperature threshold range identified in other climate change studies

    Non-linear responses of glaciated prairie wetlands to climate warming

    Get PDF
    The response of ecosystems to climate warming is likely to include threshold events when small changes in key environmental drivers produce large changes in an ecosystem. Wetlands of the Prairie Pothole Region (PPR) are especially sensitive to climate variability, yet the possibility that functional changes may occur more rapidly with warming than expected has not been examined or modeled. The productivity and biodiversity of these wetlands are strongly controlled by the speed and completeness of a vegetation cover cycle driven by the wet and dry extremes of climate. Two thresholds involving duration and depth of standing water must be exceeded every few decades or so to complete the cycle and to produce highly functional wetlands. Model experiments at 19 weather stations employing incremental warming scenarios determined that wetland function across most of the PPR would be diminished beyond a climate warming of about 1.5–2.0 °C, a critical temperature threshold range identified in other climate change studies

    A Prograde, Low-Inclination Orbit for the Very Hot Jupiter WASP-3b

    Get PDF
    We present new spectroscopic and photometric observations of the transiting exoplanetary system WASP-3. Spectra obtained during two separate transits exhibit the Rossiter-McLaughlin (RM) effect and allow us to estimate the sky-projected angle between the planetary orbital axis and the stellar rotation axis, lambda = 3.3^{+2.5}_{-4.4} degrees. This alignment between the axes suggests that WASP-3b has a low orbital inclination relative to the equatorial plane of its parent star. During our first night of spectroscopic measurements, we observed an unexpected redshift briefly exceeding the expected sum of the orbital and RM velocities by 140 m/s. This anomaly could represent the occultation of material erupting from the stellar photosphere, although it is more likely to be an artifact caused by moonlight scattered into the spectrograph.Comment: 23 pages, 4 figures, Accepted for publication in The Astrophysical Journal, Replacement includes revised citation

    Evidence for 20th Century Climate Warming and Wetland Drying in the North American Prairie Pothole Region

    Get PDF
    The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946–1975; 1976–2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR’s western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species

    1982 Ohio Farm Income

    Get PDF

    Palliative care and Parkinson's disease : meeting summary and recommendations for clinical research

    Get PDF
    Introduction: Palliative care is an approach to caring for patients and families affected by serious illnesses that focuses on the relief of suffering through the management of medical symptoms, psychosocial issues, advance care planning and spiritual wellbeing. Over the past decade there has been an emerging clinical and research interest in the application of palliative care approaches to Parkinson’s disease (PD) and outpatient palliative care services are now offered by several movement disorders centers. Methods: An International Working Group Meeting on PD and Palliative Care supported by the Parkinson’s Disease Foundation was held in October 2015 to review the current state of the evidence and to make recommendations for clinical research and practice. Results: Topics included: 1) Defining palliative care for PD; 2) Lessons from palliative care for heart failure and other chronic illnesses; 3) Patient and caregiver Needs; 4) Needs assessment tools; 5) Intervention strategies; 6) Predicting prognosis and hospice referrals; 7) Choice of appropriate outcome measures; 8) Implementation, dissemination and education research; and 9) Need for research collaborations. We provide an overview of these discussions, summarize current evidence and practices, highlight gaps in our knowledge and make recommendations for future research. Conclusions: Palliative Care for PD is a rapidly growing area which holds great promise for improving outcomes for PD patients and their caregivers. While clinical research in this area can build from lessons learned in other diseases, there is a need for observational, methodological and interventional research to address the unique needs of PD patients and caregivers

    1983 Ohio Farm Income

    Get PDF

    The Ecological Significance of Emerging Deltas in Regulated Rivers

    Get PDF
    Sedimentary deltas forming in the world’s regulated rivers are a glaring gap in our knowledge of dammed riverine ecosystems. Basic ecological information is needed to inform the current debate about whether deltas should be retained and managed to gain ecosystem services lost under reservoirs or whether they should be partially removed to improve flow conveyance and to resupply sediment-starved reaches below dams. An examination of nine deltas on the heavily regulated upper and middle Missouri River showed the following: The sizes, dynamics, and biotic communities vary widely across deltas; riparian forest has established on portions of most deltas; the current delta area is over 1000 square kilometers, exceeding forest area in remnant unimpounded reaches and offering considerable land area for restoration actions; and small adjustments to reservoir operations could improve the restoration potential of deltas. Ecological studies are urgently needed to determine the future role that deltas could play in river ecosystem restoration

    1981 Ohio Farm Income

    Get PDF
    • …
    corecore