455 research outputs found

    Interaction between Faraday rotation and Cotton-Mouton effects in polarimetry modeling for NSTX

    Full text link
    The evolution of electromagnetic wave polarization is modeled for propagation in the major radial direction in the National Spherical Torus Experiment (NSTX) with retroreflection from the center stack of the vacuum vessel. This modeling illustrates that the Cotton-Mouton effect-elliptization due to the magnetic field perpendicular to the propagation direction-is shown to be strongly weighted to the high-field region of the plasma. An interaction between the Faraday rotation and Cotton-Mouton effects is also clearly identified. Elliptization occurs when the wave polarization direction is neither parallel nor perpendicular to the local transverse magnetic field. Since Faraday rotation modifies the polarization direction during propagation, it must also affect the resultant elliptization. The Cotton-Mouton effect also intrinsically results in rotation of the polarization direction, but this effect is less significant in the plasma conditions modeled. The interaction increases at longer wavelength, and complicates interpretation of polarimetry measurements.Comment: Contributed paper published as part of the Proceedings of the 18th Topical Conference on High-Temperature Plasma Diagnostics, Wildwood, New Jersey, May, 201

    Innovation as a Nonlinear Process, the Scientometric Perspective, and the Specification of an "Innovation Opportunities Explorer"

    Get PDF
    The process of innovation follows non-linear patterns across the domains of science, technology, and the economy. Novel bibliometric mapping techniques can be used to investigate and represent distinctive, but complementary perspectives on the innovation process (e.g., "demand" and "supply") as well as the interactions among these perspectives. The perspectives can be represented as "continents" of data related to varying extents over time. For example, the different branches of Medical Subject Headings (MeSH) in the Medline database provide sources of such perspectives (e.g., "Diseases" versus "Drugs and Chemicals"). The multiple-perspective approach enables us to reconstruct facets of the dynamics of innovation, in terms of selection mechanisms shaping localizable trajectories and/or resulting in more globalized regimes. By expanding the data with patents and scholarly publications, we demonstrate the use of this multi-perspective approach in the case of RNA Interference (RNAi). The possibility to develop an "Innovation Opportunities Explorer" is specified.Comment: Technology Analysis and Strategic Management (forthcoming in 2013

    BiblioBouts: A Scalable Online Social Game for the Development of Academic Research Skills

    Get PDF
    Researchers at the School of Information of the University of Michigan are designing, developing, and evaluating BiblioBouts, an online game that helps students learn academic research skills. Players practice using online library research tools while they work on an in-class assignment and produce a high-quality bibliography, at the same time as they are competing against each other to win the game! While librarians are experts at helping students who want to learn about academic research, most students are reluctant participants because they want just-in-time personal assistance that is tailored to their unique information needs, and faculty are reluctant to cede class time. The BiblioBouts project enlists games to teach undergraduate students information literacy skills and concepts in the classroom. Social gaming reinforces principles of good learning, including getting results by trial and error, self-discovery, following hunches and reinforcement through repetition. BiblioBouts also incorporates collaborative problem solving and participation in a community of learning. The project aims to explore how games can be utilized to achieve information literacy goals and to yield open-source game software that libraries could use immediately to enhance their information literacy programs. The LOEX presentation will incorporate a live interactive demo of the game, as well as videos demonstrating gameplay. We will discuss challenges in situating the game into the classroom and integrating it into existing course syllabi. The presentation will describe how we have adapted the game in response to feedback from students and instructors during the pilot process

    The role of CDC48 in the retro-translocation of non-ubiquitinated toxin substrates in plant cells

    Get PDF
    When the catalytic A subunits of the castor bean toxins ricin and Ricinus communis agglutinin (denoted as RTA and RCA A, respectively) are delivered into the endoplasmic reticulum (ER) of tobacco protoplasts, they become substrates for ER-associated protein degradation (ERAD). As such, these orphan polypeptides are retro-translocated to the cytosol, where a significant proportion of each protein is degraded by proteasomes. Here we begin to characterise the ERAD pathway in plant cells, showing that retro-translocation of these lysine-deficient glycoproteins requires the ATPase activity of cytosolic CDC48. Lysine polyubiquitination is not obligatory for this step. We also show that while RCA A is found in a mannose-untrimmed form prior to its retro-translocation, a significant proportion of newly synthesised RTA cycles via the Golgi and becomes modified by downstream glycosylation enzymes. Despite these differences, both proteins are similarly retro-translocated

    The SSTARS (STeroids and Stents Against Re-Stenosis) Trial : different stent alloys and the use of peri-procedural oral corticosteroids to prevent in-segment restenosis after percutaneous coronary intervention

    Get PDF
    Background Stent design and technological modifications to allow for anti-proliferative drug elution influence restenosis rates following percutaneous coronary intervention (PCI). We aimed to investigate whether peri-procedural administration of corticosteroids or the use of thinner strut cobalt alloy stents would reduce rates of binary angiographic restenosis (BAR) after PCI. Methods This was a two centre, mixed single and double blinded, randomised controlled trial using a factorial design. We compared (a) the use of prednisolone to placebo, starting at least six hours pre-PCI and continued for 28 days post-PCI, and (b) cobalt chromium (CoCr) to stainless steel (SS) alloy stents, in patients admitted for PCI. The primary end-point was BAR at six months. Results 315 patients (359 lesions) were randomly assigned to either placebo (n = 145) or prednisolone (n = 170) and SS (n = 160) or CoCr (n = 160). The majority (58%) presented with an ACS, 11% had diabetes and 287 (91%) completed angiographic follow up. BAR occurred in 26 cases in the placebo group (19.7%) versus 31 cases in the prednisolone group (20.0%) respectively, p = 1.00. For the comparison between SS and CoCr stents, BAR occurred in 32 patients (21.6%) versus 25 patients (18.0%) respectively, p = 0.46. Conclusion Our study showed that treating patients with a moderately high dose of prednisolone for 28 days following PCI with BMS did not reduce the incidence of BAR. In addition, we showed no significant reduction in 6 month restenosis rates with stents composed of CoCr alloy compared to SS

    Response and Acquired Resistance to Everolimus in Anaplastic Thyroid Cancer

    Get PDF
    Everolimus, an inhibitor of the mammalian target of rapamycin (mTOR), is effective in treating tumors harboring alterations in the mTOR pathway. Mechanisms of resistance to everolimus remain undefined. Resistance developed in a patient with metastatic anaplastic thyroid carcinoma after an extraordinary 18-month response. Whole-exome sequencing of pretreatment and drug-resistant tumors revealed a nonsense mutation in TSC2, a negative regulator of mTOR, suggesting a mechanism for exquisite sensitivity to everolimus. The resistant tumor also harbored a mutation in MTOR that confers resistance to allosteric mTOR inhibition. The mutation remains sensitive to mTOR kinase inhibitors

    Cellular and molecular mechanisms of IMMunE dysfunction and Recovery from SEpsis-related critical illness in adults: An observational cohort study (IMMERSE) protocol paper

    Get PDF
    Sepsis is a common illness. Immune responses are considered major drivers of sepsis illness and outcomes. However, there are no proven immunomodulator therapies in sepsis. We hypothesised that in-depth characterisation of sepsis-specific immune trajectory may inform immunomodulation in sepsis-related critical illness. We describe the protocol of the IMMERSE study to address this hypothesis. We include critically ill sepsis patients without documented immune comorbidity and age-sex matched cardiac surgical patients as controls. We plan to perform an in-depth biological characterisation of innate and adaptive immune systems, platelet function, humoral components and transcriptional determinants of the immune system responses in sepsis. This will be done at pre-specified time points during their critical illness to generate an illness trajectory. The sample size for each biological assessment is different and is described in detail. In summary, the overall aim of the IMMERSE study is to increase the granularity of longitudinal immunology model of sepsis to inform future immunomodulation trials

    Characterization of a Cdc42 Protein Inhibitor and Its Use as a Molecular Probe

    Get PDF
    Cdc42 plays important roles in cytoskeleton organization, cell cycle progression, signal transduction, and vesicle trafficking. Overactive Cdc42 has been implicated in the pathology of cancers, immune diseases, and neuronal disorders. Therefore, Cdc42 inhibitors would be useful in probing molecular pathways and could have therapeutic potential. Previous inhibitors have lacked selectivity and trended toward toxicity. We report here the characterization of a Cdc42-selective guanine nucleotide binding lead inhibitor that was identified by high throughput screening. A second active analog was identified via structure-activity relationship studies. The compounds demonstrated excellent selectivity with no inhibition toward Rho and Rac in the same GTPase family. Biochemical characterization showed that the compounds act as noncompetitive allosteric inhibitors. When tested in cellular assays, the lead compound inhibited Cdc42-related filopodia formation and cell migration. The lead compound was also used to clarify the involvement of Cdc42 in the Sin Nombre virus internalization and the signaling pathway of integrin VLA-4. Together, these data present the characterization of a novel Cdc42-selective allosteric inhibitor and a related analog, the use of which will facilitate drug development targeting Cdc42-related diseases and molecular pathway studies that involve GTPases.This work was supported by National Science Foundation (NSF) Grant MCB0956027 and National Institutes of Health Grant R03 MH081231-01 from the Molecular Libraries Program (to A. W. N.); University of New Mexico Center for Molecular Discovery Molecular Libraries Probe Production Centers (UNMCMD MLPCN) National Institutes of Health Grants U54MH084690 and R01HL081062 (to L. A. S.); UNM National Center for Research Resources (NCRR) Grant 5P20RR016480 (to L. G. H.); National Institutes of Health Grant R21 CA170375-01 through the NCI (to A. W. N., L. G. H., and J. E. G.); National Institutes of Health Grants NS066429 and AI092130 (to T. B.); and University of Kansas Specialized Chemistry Center (KUSCC) MLPCN National Institutes of Health Grant U54HG005031 (to J. A.)

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
    corecore