39,269 research outputs found

    Chaotic string-capture by black hole

    Full text link
    We consider a macroscopic charge-current carrying (cosmic) string in the background of a Schwarzschild black hole. The string is taken to be circular and is allowed to oscillate and to propagate in the direction perpendicular to its plane (that is parallel to the equatorial plane of the black hole). Nurmerical investigations indicate that the system is non-integrable, but the interaction with the gravitational field of the black hole anyway gives rise to various qualitatively simple processes like "adiabatic capture" and "string transmutation".Comment: 13 pages Latex + 3 figures (not included), Nordita 93/55

    Small-angle scattering in a marginal Fermi-liquid

    Full text link
    We study the magnetotransport properties of a model of small-angle scattering in a marginal Fermi liquid. Such a model has been proposed by Varma and Abrahams [Phys. Rev. Lett. 86, 4652 (2001)] to account for the anomalous temperature dependence of in-plane magnetotransport properties of the high-Tc cuprates. We study the resistivity, Hall angle and magnetoresistance using both analytical and numerical techniques. We find that small-angle scattering only generates a new temperature dependence for the Hall angle near particle-hole symmetric Fermi surfaces where the conventional Hall term vanishes. The magnetoresistance always shows Kohler's rule behavior.Comment: 4 pages, 3 figures, Revtex

    Phase diagram and quasiparticle properties of the Hubbard model within cluster two-site DMFT

    Full text link
    We present a cluster dynamical mean-field treatment of the Hubbard model on a square lattice to study the evolution of magnetism and quasiparticle properties as the electron filling and interaction strength are varied. Our approach for solving the dynamical mean-field equations is an extension of Potthoff's "two-site" method [Phys. Rev. B. 64, 165114 (2001)] where the self-consistent bath is represented by a highly restricted set of states. As well as the expected antiferromagnetism close to half filling, we observe distortions of the Fermi surface. The proximity of a van Hove point and the incipient antiferromagnetism lead to the evolution from an electron-like Fermi surface away from the Mott transition, to a hole-like one near half-filling. Our results also show a gap opening anisotropically around the Fermi surface close to the Mott transition (reminiscent of the pseudogap phenomenon seen in the cuprate high-Tc superconductors). This leaves Fermi arcs which are closed into pockets by lines with very small quasiparticle residue.Comment: 10 pages, 8 figures, latex (revtex4

    Symplectic structure for elastic and chiral conducting cosmic string models

    Full text link
    This article is based on the covariant canonical formalism and corresponding symplectic structure on phase space developed by Witten, Zuckerman and others in the context of field theory. After recalling the basic principles of this procedure, we construct the conserved bilinear symplectic current for generic elastic string models. These models describe current carrying cosmic strings evolving in an arbitrary curved background spacetime. Particular attention is paid to the special case of the chiral string for which the worldsheet current is null. Different formulations of the chiral string action are discussed in detail, and as a result the integrability property of the chiral string is clarified.Comment: 18 page

    Dynamics of cosmic strings and springs; a covariant formulation

    Full text link
    A general family of charge-current carrying cosmic string models is investigated. In the special case of circular configurations in arbitrary axially symmetric gravitational and electromagnetic backgrounds the dynamics is determined by simple point particle Hamiltonians. A certain "duality" transformation relates our results to previous ones, obtained by Carter et. al., for an infinitely long open stationary string in an arbitrary stationary background.Comment: 11 pages, Latex, Nordita preprint 93/28

    Natural environment support guidelines for space shuttle tests and operations

    Get PDF
    All space shuttle events from launch through solid rocket booster recovery and orbiter landing are considered in terms of constraints placed on those operations by the natural environment. Thunderstorm activity is discussed as an example of a possible hazard. The activities most likely to require advanced detection and monitoring techniques are identified as those from deorbit decision to Orbiter landing. The inflexible flight plan will require the transmission of real time wind profile information below 24 km and warnings of thunderstorms or turbulence in the Orbiter flight path. Extensive aerial reconnaissance and communication facilities and procedures to permit immediate transmission of aircraft reports to the mission control authority and to the Orbiter will also be required

    Magnetic fields and differential rotation on the pre-main sequence

    Get PDF
    Maps of magnetic field topologies of rapidly rotating stars obtained over the last decade or so have provided unique insight into the operation of stellar dynamos. However, for solar-type stars many of the targets imaged to date have been lower-mass zero-age main sequence stars. We present magnetic maps and differential rotation measurements of two-higher mass pre-main sequence stars HD 106506 (~10 Myrs) and HD 141943 (~15 Myrs). These stars should evolve into mid/late F-stars with predicted high differential rotation and little magnetic activity. We investigate what effect the extended convection zones of these pre-main sequence stars has on their differential rotation and magnetic topologies. ©2009 American Institute of Physic

    Prolongation of Friction Dominated Evolution for Superconducting Cosmic Strings

    Get PDF
    This investigation is concerned with cosmological scenarios based on particle physics theories that give rise to superconducting cosmic strings (whose subsequent evolution may produce stable loop configurations known as vortons). Cases in which electromagnetic coupling of the string current is absent or unimportant have been dealt with in previous work. The purpose of the present work is to provide quantitative estimates for cases in which electromagnetic interaction with the surrounding plasma significantly affects the string dynamics. In particular it will be shown that the current can become sufficiently strong for the initial period of friction dominated string motion to be substantially prolonged, which would entail a reinforcement of the short length scale end of the spectrum of the string distribution, with potentially observable cosmological implications if the friction dominated scenario lasts until the time of plasma recombination.Comment: 10 pages Late

    Experimental study of ion heating and acceleration during magnetic reconnection

    Get PDF
    Ion heating and acceleration has been studied in the well-characterized reconnection layer of the Magnetic Reconnection Experiment [M. Yamada , Phys. Plasmas 4, 1936 (1997)]. Ion temperature in the layer rises substantially during null-helicity reconnection in which reconnecting field lines are anti-parallel. The plasma outflow is sub-Alfvenic due to a downstream back pressure. An ion energy balance calculation based on the data and including classical viscous heating indicates that ions are heated largely via nonclassical mechanisms. The T-i rise is much smaller during co-helicity reconnection in which field lines reconnect obliquely. This is consistent with a slower reconnection rate and a smaller resistivity enhancement over the Spitzer value. These observations show that nonclassical dissipation mechanisms can play an important role both in heating the ions and in facilitating the reconnection process
    • …
    corecore