26,429 research outputs found
Chaotic string-capture by black hole
We consider a macroscopic charge-current carrying (cosmic) string in the
background of a Schwarzschild black hole. The string is taken to be circular
and is allowed to oscillate and to propagate in the direction perpendicular to
its plane (that is parallel to the equatorial plane of the black hole).
Nurmerical investigations indicate that the system is non-integrable, but the
interaction with the gravitational field of the black hole anyway gives rise to
various qualitatively simple processes like "adiabatic capture" and "string
transmutation".Comment: 13 pages Latex + 3 figures (not included), Nordita 93/55
Transonic Elastic Model for Wiggly Goto-Nambu String
The hitherto controversial proposition that a ``wiggly" Goto-Nambu cosmic
string can be effectively represented by an elastic string model of exactly
transonic type (with energy density inversely proportional to its tension
) is shown to have a firm mathematical basis.Comment: 8 pages, plain TeX, no figure
NASTRAN data generation of helicopter fuselages using interactive graphics
The development and implementation of a preprocessor system for the finite element analysis of helicopter fuselages is described. The system utilizes interactive graphics for the generation, display, and editing of NASTRAN data for fuselage models. It is operated from an IBM 2250 cathode ray tube (CRT) console driven by an IBM 370/145 computer. Real time interaction plus automatic data generation reduces the nominal 6 to 10 week time for manual generation and checking of data to a few days. The interactive graphics system consists of a series of satellite programs operated from a central NASTRAN Systems Monitor. Fuselage structural models including the outer shell and internal structure may be rapidly generated. All numbering systems are automatically assigned. Hard copy plots of the model labeled with GRID or elements ID's are also available. General purpose programs for displaying and editing NASTRAN data are included in the system. Utilization of the NASTRAN interactive graphics system has made possible the multiple finite element analysis of complex helicopter fuselage structures within design schedules
Mass of Rotating Black Holes in Gauged Supergravities
The masses of several recently-constructed rotating black holes in gauged
supergravities, including the general such solution in minimal gauged
supergravity in five dimensions, have until now been calculated only by
integrating the first law of thermodynamics. In some respects it is more
satisfactory to have a calculation of the mass that is based directly upon the
integration of a conserved quantity derived from a symmetry principal. In this
paper, we evaluate the masses for the newly-discovered rotating black holes
using the conformal definition of Ashtekar, Magnon and Das (AMD), and show that
the results agree with the earlier thermodynamic calculations. We also consider
the Abbott-Deser (AD) approach, and show that this yields an identical answer
for the mass of the general rotating black hole in five-dimensional minimal
gauged supergravity. In other cases we encounter discrepancies when applying
the AD procedure. We attribute these to ambiguities or pathologies of the
chosen decomposition into background AdS metric plus deviations when scalar
fields are present. The AMD approach, involving no decomposition into
background plus deviation, is not subject to such complications. Finally, we
also calculate the Euclidean action for the five-dimensional solution in
minimal gauged supergravity, showing that it is consistent with the quantum
statistical relation.Comment: Typos corrected and references update
Non-stationary de Sitter cosmological models
In this note it is proposed a class of non-stationary de Sitter, rotating and
non-rotating, solutions of Einstein's field equations with a cosmological term
of variable function.Comment: 11 pages, Latex. International Journal of Modern Physics D (accepted
for publication
Bogomol'nyi Limit For Magnetic Vortices In Rotating Superconductor
This work is the sequel of a previous investigation of stationary and
cylindrically symmetric vortex configurations for simple models representing an
incompressible non-relativistic superconductor in a rigidly rotating
background. In the present paper, we carry out our analysis with a generalized
Ginzburg-Landau description of the superconductor, which provides a
prescription for the radial profile of the normal density within the vortex.
Within this framework, it is shown that the Bogomol'nyi limit condition marking
the boundary between type I and type II behavior is unaffected by the rotation
of the background.Comment: 7 pages, uses RevTeX, submitted to Phys.Rev.
Dynamical Stability of Witten Rings
The dynamical stability of cosmic rings, or vortons, is investigated for the
particular equation of state given by the Witten bosonic model. It is found
that there exists a finite range of the state parameter for which the vorton
states are actually stable against dynamical perturbations. Inclusion of the
electromagnetic self action into the equation of state slightly shrinks the
stability region but otherwise yields no qualitative difference. If the Witten
bosonic model represents a good approximation for more realistic string models,
then the cosmological vorton excess problem can only be solved by assuming
either that strings are formed at low energy scales or that some quantum
instability may develop at a sufficient rate.Comment: 11 pages, LaTeX-ReVTeX (v.3), 2 figures available upon request, DAMTP
R-94/1
Rigidly Rotating Strings in Stationary Spacetimes
In this paper we study the motion of a rigidly rotating Nambu-Goto test
string in a stationary axisymmetric background spacetime. As special examples
we consider the rigid rotation of strings in flat spacetime, where explicit
analytic solutions can be obtained, and in the Kerr spacetime where we find an
interesting new family of test string solutions. We present a detailed
classification of these solutions in the Kerr background.Comment: 19 pages, Latex, 9 figures, revised for publication in Classical and
Quantum Gravit
Spinning BTZ Black Hole versus Kerr Black Hole : A Closer Look
By applying Newman's algorithm, the AdS_3 rotating black hole solution is
``derived'' from the nonrotating black hole solution of Banados, Teitelboim,
and Zanelli (BTZ). The rotating BTZ solution derived in this fashion is given
in ``Boyer-Lindquist-type'' coordinates whereas the form of the solution
originally given by BTZ is given in a kind of an ``unfamiliar'' coordinates
which are related to each other by a transformation of time coordinate alone.
The relative physical meaning between these two time coordinates is carefully
studied. Since the Kerr-type and Boyer-Lindquist-type coordinates for rotating
BTZ solution are newly found via Newman's algorithm, next, the transformation
to Kerr-Schild-type coordinates is looked for. Indeed, such transformation is
found to exist. And in this Kerr-Schild-type coordinates, truely maximal
extension of its global structure by analytically continuing to ``antigravity
universe'' region is carried out.Comment: 17 pages, 1 figure, Revtex, Accepted for publication in Phys. Rev.
Linearized self-forces for branes
We compute the regularized force density and renormalized action due to
fields of external origin coupled to a brane of arbitrary dimension in a
spacetime of any dimension. Specifically, we consider forces generated by
gravitational, dilatonic and generalized antisymmetric form-fields. The force
density is regularized using a recently developed gradient operator. For the
case of a Nambu--Goto brane, we show that the regularization leads to a
renormalization of the tension, which is seen to be the same in both
approaches. We discuss the specific couplings which lead to cancellation of the
self-force in this case.Comment: 15 page
- …