29,981 research outputs found

    Recent developments in Vorton Theory

    Get PDF
    This article provides a concise overview of recent theoretical results concerning the theory of vortons, which are defined to be (centrifugally supported) equilibrium configurations of (current carrying) cosmic string loops. Following a presentation of the results of work on the dynamical evolution of small circular string loops, whose minimum energy states are the simplest examples of vortons, recent order of magnitude estimates of the cosmological density of vortons produced in various kinds of theoretical scenario are briefly summarised.Comment: 6 pages Latex. Contribution to 1996 Cosmology Meeting, Peyresq, Franc

    Renormalisation of gravitational self interaction for wiggly strings

    Get PDF
    It is shown that for any elastic string model with energy density UU and tension TT, the divergent contribution from gravitational self interaction can be allowed for by an action renormalisation proportional to (UT)2(U-T)^2. This formula is applied to the important special case of a bare model of the transonic type (characterised by a constant value of the product UTUT) that represents the macroscopically averaged effect of shortwavelength wiggles on an underlying microscopic model of the Nambu-Goto type (characterised by U=TU=T).Comment: 11 pages, Latex; original 8 page version extended to include estimates of relevant orders of magnitude. To be published in Physical Review,

    Poly-essential and general Hyperelastic World (brane) models

    Get PDF
    This article provides a unified treatment of an extensive category of non-linear classical field models whereby the universe is represented (perhaps as a brane in a higher dimensional background) in terms of a structure of a mathematically convenient type describable as hyperelastic, for which a complete set of equations of motion is provided just by the energy-momentum conservation law. Particular cases include those of a perfect fluid in quintessential backgrounds of various kinds, as well as models of the elastic solid kind that has been proposed to account for cosmic acceleration. It is shown how an appropriately generalised Hadamard operator can be used to construct a symplectic structure that controles the evolution of small perturbations, and that provides a characteristic equation governing the propagation of weak discontinuities of diverse (extrinsic and extrinsic) kinds. The special case of a poly-essential model - the k-essential analogue of an ordinary polytropic fluid - is examined and shown to be well behaved (like the fluid) only if the pressure to density ratio ww is positive.Comment: 16 pages Latex, Contrib. to 10th Peyresq Pysics Meeting, June 2005: Micro and Macro Structures of Spacetim

    Symplectic structure for elastic and chiral conducting cosmic string models

    Full text link
    This article is based on the covariant canonical formalism and corresponding symplectic structure on phase space developed by Witten, Zuckerman and others in the context of field theory. After recalling the basic principles of this procedure, we construct the conserved bilinear symplectic current for generic elastic string models. These models describe current carrying cosmic strings evolving in an arbitrary curved background spacetime. Particular attention is paid to the special case of the chiral string for which the worldsheet current is null. Different formulations of the chiral string action are discussed in detail, and as a result the integrability property of the chiral string is clarified.Comment: 18 page

    Kink oscillations in magnetic tubes with twisted annulus

    Get PDF
    Aims.We study kink waves in a magnetic flux tube modelled as a straight core surrounded by a magnetically twisted annulus, both embedded in a straight ambient external field, and derive the dispersion relation for this configuration. Methods.The existence and behaviour of the kink modes are examined with specific attention to the effect that the addition of magnetic twist has on phase speeds and periods. Analytic expansions to the short and long wavelength approximations are also considered. Results.The magnetic twist is found to introduce of an infinite set of body modes into solutions of the dispersion relation not present in the untwisted case. Moreover, for the kink modes, the width of interval of this infinite set, generally found to occupy phase speeds around the annulus' longitudinal Alfvén speed, increases for longer wavelengths. Two surface modes are also present in the solution, one at each surface: the internal and the external edges of the annulus. The magnetic twist is found to increase or decrease the phase speeds of these surface modes that are depending on the ratio of internal and external Alfvén speeds in the flux tube. Conclusions.The magnetic twist of the annulus region of a flux tube is found to have a marked effect on the phase speeds of occurring modes. A straight annulus layer increased (or decreased) the periods of the surface modes for a tube modelled as a density (magnetic) enhancement. The addition of twist reduces the periods of the modes in both cases

    Cosmic Vortons and Particle Physics Constraints

    Get PDF
    We investigate the cosmological consequences of particle physics theories that admit stable loops of superconducting cosmic string - {\it vortons}. General symmetry breaking schemes are considered, in which strings are formed at one energy scale and subsequently become superconducting in a secondary phase transition at what may be a considerably lower energy scale. We estimate the abundances of the ensuing vortons, and thereby derive constraints on the relevant particle physics models from cosmological observations. These constraints significantly restrict the category of admissible Grand Unified theories, but are quite compatible with recently proposed effects whereby superconducting strings may have been formed close to the electroweak phase transition.Comment: 33 pages, 2 figures, RevTe

    Convergence analysis of Crank-Nicolson and Rannacher time-marching

    Get PDF
    This paper presents a convergence analysis of Crank-Nicolson and Rannacher time-marching methods which are often used in finite difference discretisations of the Black-Scholes equations. Particular attention is paid to the important role of Rannacher's startup procedure, in which one or more initial timesteps use Backward Euler timestepping, to achieve second order convergence for approximations of the first and second derivatives. Numerical results confirm the sharpness of the error analysis which is based on asymptotic analysis of the behaviour of the Fourier transform. The relevance to Black-Scholes applications is discussed in detail, with numerical results supporting recommendations on how to maximise the accuracy for a given computational cost

    Sharp error estimates for discretisations of the 1D convection/diffusion equation with Dirac initial data

    Get PDF
    This paper derives sharp estimates of the error arising from explicit and implicit approximations of the constant coefficient 1D convection/diffusion equation with Dirac initial data. The error analysis is based on Fourier analysis and asymptotic approximation of the integrals resulting from the inverse Fourier transform. This research is motivated by applications in computational finance and the desire to prove convergence of approximations to adjoint partial differential equations

    Computer program to simulate Raman scattering

    Get PDF
    A computer program is described for simulating the vibration-rotation and pure rotational spectrum of a combustion system consisting of various diatomic molecules and CO2 as a function of temperature and number density. Two kinds of spectra are generated: a pure rotational spectrum for any mixture of diatomic and linear triatomic molecules, and a vibrational spectrum for diatomic molecules. The program is designed to accept independent rotational and vibrational temperatures for each molecule, as well as number densities

    Dynamical Stability of Witten Rings

    Get PDF
    The dynamical stability of cosmic rings, or vortons, is investigated for the particular equation of state given by the Witten bosonic model. It is found that there exists a finite range of the state parameter for which the vorton states are actually stable against dynamical perturbations. Inclusion of the electromagnetic self action into the equation of state slightly shrinks the stability region but otherwise yields no qualitative difference. If the Witten bosonic model represents a good approximation for more realistic string models, then the cosmological vorton excess problem can only be solved by assuming either that strings are formed at low energy scales or that some quantum instability may develop at a sufficient rate.Comment: 11 pages, LaTeX-ReVTeX (v.3), 2 figures available upon request, DAMTP R-94/1
    corecore