1,253 research outputs found

    Quantum Ergoregion Instability

    Get PDF
    We have shown that, as in the case of black holes, an ergosphere itself with no event horizon inside can evaporate spontaneously, giving energy radiation to spatial infinity until the ergoregion disappears. However, the feature of his quantum ergoregion instability is very much different from black hole radiation. It is rather analogous to a laser amplification. This analysis is based on the canonical quantization of a neutral scalar field in the presence of unstable modes characterized by complex frequencies in a simple model for a rapidly rotating star.Comment: 10 pages, latex, one epsfig, to appear in the Proceedings of the APCTP Winter School on Duality of String Theory, Korea, Feb. 17-28, 1997; a brief version of gr-qc/9701040 with slightly different presentatio

    An Equation of State of a Carbon-Fibre Epoxy Composite under Shock Loading

    Full text link
    An anisotropic equation of state (EOS) is proposed for the accurate extrapolation of high-pressure shock Hugoniot (anisotropic and isotropic) states to other thermodynamic (anisotropic and isotropic) states for a shocked carbon-fibre epoxy composite (CFC) of any symmetry. The proposed EOS, using a generalised decomposition of a stress tensor [Int. J. Plasticity \textbf{24}, 140 (2008)], represents a mathematical and physical generalisation of the Mie-Gr\"{u}neisen EOS for isotropic material and reduces to this equation in the limit of isotropy. Although a linear relation between the generalised anisotropic bulk shock velocity UsAU^{A}_{s} and particle velocity upu_{p} was adequate in the through-thickness orientation, damage softening process produces discontinuities both in value and slope in the UsAU^{A}_{s}-upu_{p} relation. Therefore, the two-wave structure (non-linear anisotropic and isotropic elastic waves) that accompanies damage softening process was proposed for describing CFC behaviour under shock loading. The linear relationship UsAU^{A}_{s}-upu_{p} over the range of measurements corresponding to non-linear anisotropic elastic wave shows a value of c0Ac^{A}_{0} (the intercept of the UsAU^{A}_{s}-upu_{p} curve) that is in the range between first and second generalised anisotropic bulk speed of sound [Eur. Phys. J. B \textbf{64}, 159 (2008)]. An analytical calculation showed that Hugoniot Stress Levels (HELs) in different directions for a CFC composite subject to the two-wave structure (non-linear anisotropic elastic and isotropic elastic waves) agree with experimental measurements at low and at high shock intensities. The results are presented, discussed and future studies are outlined.Comment: 12 pages, 9 figure

    Predictions from Quantum Cosmology

    Get PDF
    The world view suggested by quantum cosmology is that inflating universes with all possible values of the fundamental constants are spontaneously created out of nothing. I explore the consequences of the assumption that we are a `typical' civilization living in this metauniverse. The conclusions include inflation with an extremely flat potential and low thermalization temperature, structure formation by topological defects, and an appreciable cosmological constant.Comment: (revised version), 15 page

    No Go Theorem for Kinematic Self-Similarity with A Polytropic Equation of State

    Get PDF
    We have investigated spherically symmetric spacetimes which contain a perfect fluid obeying the polytropic equation of state and admit a kinematic self-similar vector of the second kind which is neither parallel nor orthogonal to the fluid flow. We have assumed two kinds of polytropic equations of state and shown in general relativity that such spacetimes must be vacuum.Comment: 5 pages, no figures. Revtex. One word added to the title. Final version to appear in Physical Review D as a Brief Repor

    Linear to quadratic crossover of Cooper pair dispersion relation

    Full text link
    Cooper pairing is studied in three dimensions to determine its binding energy for all coupling using a general separable interfermion interaction. Also considered are Cooper pairs (CPs) with nonzero center-of-mass momentum (CMM). A coupling-independent {\it linear} term in the CMM dominates the pair excitation energy in weak coupling and/or high fermion density, while the more familiar quadratic term prevails only in the extreme low-density (i.e., vacuum) limit for any nonzero coupling. The linear-to-quadratic crossover of the CP dispersion relation is analyzed numerically, and is expected to play a central role in a model of superconductivity (and superfluidity) simultaneously accommodating a BCS condensate as well as a Bose-Einstein condensate of CP bosons.Comment: 13 pages plus 2 figure

    Effects of acceleration on the collision of particles in the rotating black hole spacetime

    Full text link
    We study the collision of two geodesic particles in the accelerating and rotating black hole spacetime and probe the effects of the acceleration of black hole on the center-of-mass energy of the colliding particles and on the high-velocity collision belts. We find that the dependence of the center-of-mass energy on the acceleration in the near event-horizon collision is different from that in the near acceleration-horizon case. Moreover, the presence of the acceleration changes the shape and position of the high-velocity collision belts. Our results show that the acceleration of black holes brings richer physics for the collision of particles.Comment: 7 pages, 2 figures, The corrected version accepted for publication in EPJ

    Fermion zero modes in N=2 supervortices

    Get PDF
    We study the fermionic zero modes of BPS semilocal magnetic vortices in N=2 supersymmetric QED with a Fayet-Iliopoulos term and two matter hypermultiplets of opposite charge. There is a one-parameter family of vortices with arbitrarily wide magnetic cores. Contrary to the situation in pure Nielsen-Olesen vortices, new zero modes are found which get their masses from Yukawa couplings to scalar fields that do not wind and are non-zero at the core. We clarify the relation between fermion mass and zero modes. The new zero modes have opposite chiralities and therefore do not affect the net counting (left minus right) of zero modes coming from index theorems but manage to evade other index theorems in the literature that count the total number (left plus right) of zero modes in simpler systems.Comment: 9 pages, 1 figure. Uses Revtex4. Revised version includes discussion about the back-reaction of the fermions on the background vortex. Version to be published in Phys. Rev.

    Tight-binding g-Factor Calculations of CdSe Nanostructures

    Full text link
    The Lande g-factors for CdSe quantum dots and rods are investigated within the framework of the semiempirical tight-binding method. We describe methods for treating both the n-doped and neutral nanostructures, and then apply these to a selection of nanocrystals of variable size and shape, focusing on approximately spherical dots and rods of differing aspect ratio. For the negatively charged n-doped systems, we observe that the g-factors for near-spherical CdSe dots are approximately independent of size, but show strong shape dependence as one axis of the quantum dot is extended to form rod-like structures. In particular, there is a discontinuity in the magnitude of g-factor and a transition from anisotropic to isotropic g-factor tensor at aspect ratio ~1.3. For the neutral systems, we analyze the electron g-factor of both the conduction and valence band electrons. We find that the behavior of the electron g-factor in the neutral nanocrystals is generally similar to that in the n-doped case, showing the same strong shape dependence and discontinuity in magnitude and anisotropy. In smaller systems the g-factor value is dependent on the details of the surface model. Comparison with recent measurements of g-factors for CdSe nanocrystals suggests that the shape dependent transition may be responsible for the observations of anomalous numbers of g-factors at certain nanocrystal sizes.Comment: 15 pages, 6 figures. Fixed typos to match published versio

    The dS/CFT Correspondence and the Big Smash

    Get PDF
    Recent observations suggest that the cosmological equation-of-state parameter w is close to -1. To say this is to imply that w could be slightly less than -1, which leads to R.Caldwell's "Phantom cosmologies". These often have the property that they end in a "Big Smash", a final singularity in which the Universe is destroyed in a finite proper time by excessive *expansion*. We show that, classically, this fate is not inevitable: there exist Smash-free Phantom cosmologies, obtained by a suitable perturbation of the deSitter equation of state, in which the spacetime is in fact asymptotically deSitter. [Contrary to popular belief, such cosmologies, which violate the Dominant Energy Condition, do not necessarily violate causality.] We also argue, however, that the physical interpretation of these classically acceptable spacetimes is radically altered by ``holography'', as manifested in the dS/CFT correspondence. It is shown that, if the boundary CFTs have conventional properties, then recent ideas on "time as an inverse renormalization group flow" can be used to rule out these cosmologies. Very recently, however, it has been argued that the CFTs in dS/CFT are of a radically unconventional form, and this opens up the possibility that Smash-free Phantom spacetimes offer a simple model of a "bouncing" cosmology in which the quantum-mechanical entanglement of the field theories in the infinite past and future plays an essential role.Comment: 22 pages, clarification of triple analytic continuation, additional Comments added in the light of hep-th/020724

    Gluon self-energy in a two-flavor color superconductor

    Get PDF
    The energy and momentum dependence of the gluon self-energy is investigated in a color superconductor with two flavors of massless quarks. The presence of a color-superconducting quark-quark condensate modifies the gluon self-energy for energies which are of the order of the gap parameter. For gluon energies much larger than the gap, the self-energy assumes the form given by the standard hard-dense loop approximation. It is shown that this modification of the gluon self-energy does not affect the magnitude of the gap to leading and subleading order in the weak-coupling limit.Comment: 21 pages, 6 figures, RevTeX, aps and epsfig style files require
    corecore