10 research outputs found

    Quantitative nanoscale electrostatics of viruses

    Get PDF
    Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed 29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of charge is a distinguishing characteristic of each virus, depending crucially on the nature of the viral capsid and the presence/absence of the genetic material.MINECO of Spain through project FIS2011-29493, FIS2014-59562-R, and the Spanish Interdisciplinary Network on the Biophysics of Viruses (Biofivinet, FIS2011-16090-E). CSM acknowledges funding from BFU2013- 41249-P, and Biofivinet. MGM acknowledges funding from the Spanish Government (BIO2012-37649), Comunidad de Madrid (S-505/MAT-0303), and by an institutional grant from Fundación Areces to the Centro de Biología MolecularPeer Reviewe

    Atomic force microscopy-based mechanobiology

    Get PDF
    Mechanobiology emerges at the crossroads of medicine, biology , biophysics and engineering and describes how the responses of proteins, cells, tissues and organs to mechanical cues contribute to development, differentiation, physiology and disease. The grand challenge in mechanobiology is to quantify how biological systems sense, transduce, respond and apply mechanical signals. Over the past three decades, atomic force microscopy (AFM) has emerged as a key platform enabling the simultaneous morphological and mechanical characterization of living biological systems. In this Review , we survey the basic principles, advantages and limitations of the most common AFM modalities used to map the dynamic mechanical properties of complex biological samples to their morphology. We discuss how mechanical properties can be directly linked to function, which has remained a poorly addressed issue. We outline the potential of combining AFM with complementary techniques, including optical microscopy and spectroscopy of mechanosensitive fluorescent constructs, super- resolution microscopy , the patch clamp technique and the use of microstructured and fluidic devices to characterize the 3D distribution of mechanical responses within biological systems and to track their morphology and functional state

    Cell–cell adhesion interface: orthogonal and parallel forces from contraction, protrusion, and retraction

    No full text

    Application of atomic force microscopy in cancer research

    No full text

    Atomic force microscopy-based mechanobiology

    No full text

    Material approaches to active tissue mechanics

    No full text
    corecore