411 research outputs found

    Gilvocarcin Gene Cluster, Recombinant Production and use Thereof

    Get PDF
    A nucleic acid molecule encoding the gilvocarcin V gene cluster and subunits thereof. Recombinant vectors and host cells comprising a nucleic acid compound encoding the gilvocarcin V gene cluster or subunits thereof. Host cells comprising recombinant vectors encoding the gilvocarcin polyketide synthase and gilvocarcin post-PKS modifying enzymes from Streptomyces griseoflavus can be used to produce gilvocarcin and functional gilvocarcin mutants, analogs and derivatives thereof with application as antibiotics, anticancer agents, immunosuppressants, antivirals, and neuroprotective agents

    Rules of molecular self-organization

    Get PDF

    Scalar transport from a point source in flows over wavy walls

    Get PDF
    Simultaneous measurements of the velocity and concentration field in fully developed turbulent flows over a wavy wall are described. The concentration field originates from a low-momentum plume of a passive tracer. PLIF and digital particle image velocimetry are used to make spatially resolved measurements of the structure of the scalar distribution and the velocity. The measurements are performed at three different Reynolds numbers of Re b = 5,600, Re b = 11,200 and Re b = 22,400, respectively, based on the bulk velocity u b and the total channel height 2h. The velocity field and the scalar field are investigated in a water channel with an aspect ratio of 12:1, where the bottom wall of the test section consists of a train of sinusoidal waves. The wavy wall is characterized by the amplitude to wavelength ratio α = 0.05 and the ratio β between the wave amplitude and the half channel height where β = 0.1. The scalar is released from a point source at the wave crest. For the concentration measurements, Rhodamine B is used as tracer dye. At low to moderate Reynolds number, the flow field is characterized through a recirculation zone which develops after the wave crest. The recirculation zone induces high intensities of the fluctuations of the streamwise velocity and wall-normal velocity. Furthermore, large-scale structures are apparent in the flow field. In previous investigations it has been shown that these large-scale structures meander laterally in flows over wavy bottom walls. The investigations show a strong effect of the wavy bottom wall on the scalar mixing. In the vicinity of the source, the scalar is transported by packets of fluid with a high scalar concentration. As they move downstream, these packets disintegrate into filament-like structures which are subject to strong gradients between the filaments and the surrounding fluid. The lateral scale of the turbulent plume is smaller than the lateral scale of the large-scale structures in the flow field and the plume dispersion is dominated by the structures in the flow field. Due to the lateral meandering of the large-scale structures of the flow field, also the scalar plume meanders laterally. Compared to turbulent plumes in plane channel flows, the wavy bottom wall enhances the mixing effect of the turbulent flow and the spreading rate of the scalar plume is increase

    Influence of wavy surfaces on coherent structures in a turbulent flow

    Get PDF
    We describe how outer flow turbulence phenomena depend on the interaction with the wall. We investigate coherent structures in turbulent flows over different wavy surfaces and specify the influence of the different surface geometries on the coherent structures. The most important contribution to the turbulent momentum transport is attributed to these structures, therefore this flow configuration is of large engineering interest. In order to achieve a homogeneous and inhomogeneous reference flow situation two different types of surface geometries are considered: (1) three sinusoidal bottom wall profiles with different amplitude-to-wavelength ratios of α =2a/Λ=0.2 (Λ = 30mm), α=0.2 (Λ = 15mm), and α=0.1 (Λ =30mm); and (2) a profile consisting of two superimposed sinusoidal waves with α=0.1 (Λ =30mm). Measurements are carried out in a wide water channel facility (aspect ratio 12:1). Digital particle image velocimetry (PIV) is performed to examine the spatial variation of the streamwise, spanwise and wall-normal velocity components in three measurement planes. Measurements are performed at a Reynolds number of 11,200, defined with the half channel height h and the bulk velocity U B. We apply the method of snapshots and perform a proper orthogonal decomposition (POD) of the streamwise, spanwise, and wall-normal velocity components to extract the most dominant flow structures. The structure of the most dominant eigenmode is related to counter-rotating, streamwise-oriented vortices. A qualitative comparison of the eigenfunctions for different sinusoidal wall profiles shows similar structures and comparable characteristic spanwise scales Λ z =1.5H in the spanwise direction for each mode. The scale is observed to be slightly smaller for α=0.2 (Λ =15mm) and slightly larger for α=0.2 (Λ =30mm). This scaling for the flow over the basic wave geometries indicates that the size of the largest structures is neither directly linked to the solid wave amplitude, nor to the wavelength. The characteristic spanwise scale of the dominant eigenmode for the developed flow over the surface consisting of two superimposed waves reduces to 0.85H. However, a scale in the order of 1.3H is identified for the second mode. The eigenvalue spectra for the superimposed waves is much broader, more modes contribute to the energy-containing range. The turbulent flow with increased complexity of the bottom surface is characterized by an increased number of dominant large-scale structures with different spanwise scale

    Predicting the influence of a p2-symmetric substrate on molecular self-organization with an interaction-site model

    Get PDF
    An interaction-site model can a priori predict molecular selforganisation on a new substrate in Monte Carlo simulations. This is experimentally confirmed with scanning tunnelling microscopy on Fre´chet dendrons of a pentacontane template. Local and global ordering motifs, inclusion molecules and a rotated unit cell are correctly predicted

    Elucidation of the function of two glycosyltransferase genes (lanGT1 and lanGT4) involved in landomycin biosynthesis and generation of new oligosaccharide antibiotics

    Get PDF
    AbstractBackground: The genetic engineering of antibiotic-producing Streptomyces strains is an approach that became a successful methodology in developing new natural polyketide derivatives. Glycosyltransferases are important biosynthetic enzymes that link sugar moieties to aglycones, which often derive from polyketides. Biological activity is frequently generated along with this process. Here we report the use of glycosyltransferase genes isolated from the landomycin biosynthetic gene cluster to create hybrid landomycin/urdamycin oligosaccharide antibiotics.Results: Production of several novel urdamycin derivatives by a mutant of Streptomyces fradiae Tü2717 has been achieved in a combinatorial biosynthetic approach using glycosyltransferase genes from the landomycin producer Streptomyces cyanogenus S136. For the generation of gene cassettes useful for combinatorial biosynthesis experiments new vectors named pMUNI, pMUNII and pMUNIII were constructed. These vectors facilitate the construction of gene combinations taking advantage of the compatible MunI and EcoRI restriction sites.Conclusions: The high-yielding production of novel oligosaccharide antibiotics using glycosyltransferase gene cassettes generated in a very convenient way proves that glycosyltransferases can be flexible towards the alcohol substrate. In addition, our results indicate that LanGT1 from S. cyanogenus S136 is a D-olivosyltransferase, whereas LanGT4 is a L-rhodinosyltransferase
    corecore