11,067 research outputs found

    Geometry of polycrystals and microstructure

    Full text link
    We investigate the geometry of polycrystals, showing that for polycrystals formed of convex grains the interior grains are polyhedral, while for polycrystals with general grain geometry the set of triple points is small. Then we investigate possible martensitic morphologies resulting from intergrain contact. For cubic-to-tetragonal transformations we show that homogeneous zero-energy microstructures matching a pure dilatation on a grain boundary necessarily involve more than four deformation gradients. We discuss the relevance of this result for observations of microstructures involving second and third-order laminates in various materials. Finally we consider the more specialized situation of bicrystals formed from materials having two martensitic energy wells (such as for orthorhombic to monoclinic transformations), but without any restrictions on the possible microstructure, showing how a generalization of the Hadamard jump condition can be applied at the intergrain boundary to show that a pure phase in either grain is impossible at minimum energy.Comment: ESOMAT 2015 Proceedings, to appea

    On generalized Kneser hypergraph colorings

    Get PDF
    In Ziegler (2002), the second author presented a lower bound for the chromatic numbers of hypergraphs \KG{r}{\pmb s}{\calS}, "generalized rr-uniform Kneser hypergraphs with intersection multiplicities s\pmb s." It generalized previous lower bounds by Kriz (1992/2000) for the case s=(1,...,1){\pmb s}=(1,...,1) without intersection multiplicities, and by Sarkaria (1990) for \calS=\tbinom{[n]}k. Here we discuss subtleties and difficulties that arise for intersection multiplicities si>1s_i>1: 1. In the presence of intersection multiplicities, there are two different versions of a "Kneser hypergraph," depending on whether one admits hypergraph edges that are multisets rather than sets. We show that the chromatic numbers are substantially different for the two concepts of hypergraphs. The lower bounds of Sarkaria (1990) and Ziegler (2002) apply only to the multiset version. 2. The reductions to the case of prime rr in the proofs Sarkaria and by Ziegler work only if the intersection multiplicities are strictly smaller than the largest prime factor of rr. Currently we have no valid proof for the lower bound result in the other cases. We also show that all uniform hypergraphs without multiset edges can be represented as generalized Kneser hypergraphs.Comment: 9 pages; added examples in Section 2; added reference ([11]), corrected minor typos; to appear in J. Combinatorial Theory, Series

    Chiral d-wave superconductivity in doped graphene

    Full text link
    A highly unconventional superconducting state with a spin-singlet dx2−y2±idxyd_{x^2-y^2}\pm id_{xy}-wave, or chiral d-wave, symmetry has recently been proposed to emerge from electron-electron interactions in doped graphene. Especially graphene doped to the van Hove singularity at 1/4 doping, where the density of states diverges, has been argued to likely be a chiral d-wave superconductor. In this review we summarize the currently mounting theoretical evidence for the existence of a chiral d-wave superconducting state in graphene, obtained with methods ranging from mean-field studies of effective Hamiltonians to angle-resolved renormalization group calculations. We further discuss multiple distinctive properties of the chiral d-wave superconducting state in graphene, as well as its stability in the presence of disorder. We also review means of enhancing the chiral d-wave state using proximity-induced superconductivity. The appearance of chiral d-wave superconductivity is intimately linked to the hexagonal crystal lattice and we also offer a brief overview of other materials which have also been proposed to be chiral d-wave superconductors.Comment: 51 pages, 8 figures. Invited topical review in J. Phys.:Condens. Matte

    Effects of different closures for thickness diffusivity

    Get PDF
    The effects of spatial variations of the thickness diffusivity (K) appropriate to the parameterisation of [Gent, P.R. and McWilliams, J.C., 1990. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.] are assessed in a coarse resolution global ocean general circulation model. Simulations using three closures yielding different lateral and/or vertical variations in K are compared with a simulation using a constant value. Although the effects of changing K are in general small and all simulations remain biased compared to observations, we find systematic local sensitivities of the simulated circulation on K. In particular, increasing K near the surface in the tropical ocean lifts the depth of the equatorial thermocline, the strength of the Antarctic Circumpolar Current decreases while the subpolar and subtropical gyre transports in the North Atlantic increase by increasing K locally. We also find that the lateral and vertical structure of K given by a recently proposed closure reduces the negative temperature biases in the western North Atlantic by adjusting the pathways of the Gulf Stream and the North Atlantic Current to a more realistic position

    Data depth and floating body

    Full text link
    Little known relations of the renown concept of the halfspace depth for multivariate data with notions from convex and affine geometry are discussed. Halfspace depth may be regarded as a measure of symmetry for random vectors. As such, the depth stands as a generalization of a measure of symmetry for convex sets, well studied in geometry. Under a mild assumption, the upper level sets of the halfspace depth coincide with the convex floating bodies used in the definition of the affine surface area for convex bodies in Euclidean spaces. These connections enable us to partially resolve some persistent open problems regarding theoretical properties of the depth
    • …
    corecore