177 research outputs found

    Regulation of multiple insulin-like growth factor binding protein genes by 1α,25-dihydroxyvitamin D(3)

    Get PDF
    Recently, insulin-like growth factor binding proteins (IGFBPs) have been found to be primary mediators of the anti-proliferative actions of the nuclear hormone 1α,25-dihydroxyvitamin D(3) [1α,25(OH)(2)D(3)], but dependent on cellular context IGFBPs can also have a mitogenic effect. In this study, we performed expression profiling of all six human IGFBP genes in prostate and bone cancer cells and demonstrated that IGFBP1, 3 and 5 are primary 1α,25(OH)(2)D(3) target genes. In silico screening of the 174 kb of genomic sequence surrounding all six IGFBP genes identified 15 candidate vitamin D response elements (VDREs) close to or in IGFBP1, 2, 3 and 5 but not in the IGFBP4 and 6 genes. The putative VDREs were evaluated in vitro by gelshift assays and in living cells by reporter gene and chromatin immuno-precipitation (ChIP) assays. Of these 10 VDREs appear to be functional. ChIP assays demonstrated for each of these an individual, stimulation time-dependent association profile not only with the vitamin D receptor, but also with first heterodimeric partner the retinoid X receptor, other regulatory complex components and phosphorylated RNA polymerase II. Some of the VDREs are located distantly from the transcription start sites of IGFBP1, 3 and 5, but all 10 VDREs seem to contribute to the regulation of the genes by 1α,25(OH)(2)D(3). In conclusion, IGFBP1, 3 and 5 are primary 1α,25(OH)(2)D(3) target genes that in intact cells are each under the control of multiple VDREs

    An update on vitamin D signaling and cancer

    Get PDF
    A low vitamin D status is associated with an increased risk of various cancers, such as of colon, breast, prostate and hematological cells. The biologically most active vitamin D metabolite 1α,25-dihydroxyvitamin D (1,25(OH) D ) is a high affinity ligand of the transcription factor vitamin D receptor (VDR). 1,25(OH) D induces via VDR changes to the epigenome of healthy and neoplastic cells and in this way influences their transcriptome. Ligand-activated VDR binds to more than 10,000 loci within the human genome and affects the transcription of some 1000 target genes in a large proportion of human tissues and cell types. From the evolutionary perspective, the prime role of vitamin D was probably the control of energy metabolism later shifting to modulate innate and adaptive immunity as well as to regulate calcium and bone homeostasis. Since rapidly growing immune and cancer cells both use the same pathways and genes for controlling their proliferation, differentiation and apoptosis, not surprisingly, vitamin D signaling changes these processes also in neoplastic cells. Thus, anti-cancer effects of vitamin D may derive from managing growth and differentiation in immunity. This review provides an update on the molecular basis of vitamin D signaling, i.e., the effects of 1,25(OH) D on the epigenome and transcriptome, and its relationship to cancer prevention and therapy. 3 2 3 2 3 2 3The work in the authors’ laboratories is supported by the Academy of Finland (CC) and Ministerio de Ciencia e Innovación of Spain-Fondo Europeo de Desarrollo Regional (FEDER) (SAF2016-76377-R, SAF2017-90604-REDT/Nurcamein) and Instituto de Salud Carlos IIIFEDER (CIBERONC; CB16/12/00273) (AM)

    A Role for the PPARγ in Cancer Therapy

    Get PDF
    In 1997, the first published reports highlighted PPARγ as a novel cancer therapeutic target regulating differentiation of cancer cells. A subsequent flurry of papers described these activities more widely and fuelled further enthusiasm for differentiation therapy, as the ligands for the PPARγ were seen as well tolerated and in several cases well-established in other therapeutic contexts. This initial enthusiasm and promise was somewhat tempered by contradictory findings in several murine cancer models and equivocal trial findings. As more understanding has emerged in recent years, a renaissance has occurred in targeting PPARγ within the context of either chemoprevention or chemotherapy. This clarity has arisen in part through a clearer understanding of PPARγ biology, how the receptor interacts with other proteins and signaling events, and the mechanisms that modulate its transcriptional actions. Equally greater translational understanding of this target has arisen from a clearer understanding of in vivo murine cancer models. Clinical exploitation will most likely require precise and quantifiable description of PPARγ actions, and resolution of which targets are the most beneficial to target combined with an understanding of the mechanisms that limits its anticancer effectiveness

    Screening for PPAR Responsive Regulatory Modules in Cancer

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) have via their large set of target genes a critical impact on numerous diseases including cancer. Cancer development involves numerous regulatory cascades that drive the progression of the malignancy of the cells. On a genomic level, these pathways converge on regulatory modules, some of which contain colocalizing PPAR binding sites (PPREs). We developed an in silico screening method that incorporates experiment- and informatics-derived evidence for a more reliable prediction of PPREs and PPAR target genes. This method is based on DNA-binding data of PPAR subtypes to a panel of DR1-type PPREs and tracking the enrichment of binding sites from multiple species. The ability of PPARγ to induce cellular differentiation and the existence of FDA-approved PPARγ agonists encourage the exploration of possibilities to activate or inactivate PPRE containing modules to arrest cancer progression. Recent advances in genomic techniques combined with computational analysis of binding modules are discussed in the review with the example of our recent screen for PPREs on human chromosome 19

    Meta-analysis of primary target genes of peroxisome proliferator-activated receptors

    Get PDF
    A combined experimental and in silico approach identifies Peroxisome Proliferator Activated Receptor (PPAR) binding sites and six novel target genes in the human genome

    Regulation of the human cyclin C gene via multiple vitamin D(3)-responsive regions in its promoter

    Get PDF
    The candidate human tumor suppressor gene cyclin C is a primary target of the anti-proliferative hormone 1α,25-dihydroxyvitamin D(3) [1α,25(OH)(2)D(3)], but binding sites for the 1α,25(OH)(2)D(3) receptor (VDR), so-called 1α,25(OH)(2)D(3) response elements (VDREs), have not yet been identified in the promoter of this gene. We screened various cancer cell lines by quantitative PCR and found that the 1α,25(OH)(2)D(3) inducibility of cyclin C mRNA expression, in relationship with the 24-hydroxylase (CYP24) gene, was best in MCF-7 human breast cancer cells. To characterize the molecular mechanisms, we analyzed 8.4 kb of the cyclin C promoter by using chromatin immunoprecipitation assays (ChIP) with antibodies against acetylated histone 4, VDR and its partner receptor, retinoid X receptor (RXR). The histone 4 acetylation status of all 23 investigated regions of the cyclin C promoter did not change significantly in response to 1α,25(OH)(2)D(3), but four independent promoter regions showed a consistent, 1α,25(OH)(2)D(3)-dependent association with VDR and RXR over a time period of 240 min. Combined in silico/in vitro screening identified in each of these promoter regions a VDRE and reporter gene assays confirmed their functionality. Moreover, re-ChIP assays monitored simultaneous association of VDR with RXR, coactivator, mediator and RNA polymerase II proteins on these regions. Since cyclin C protein is associated with those mediator complexes that display transcriptional repressive properties, this study contributes to the understanding of the downregulation of a number of secondary 1α,25(OH)(2)D(3)-responding genes

    Time-Resolved Expression Profiling of the Nuclear Receptor Superfamily in Human Adipogenesis

    Get PDF
    Background: The differentiation of fibroblast-like pre-adipocytes to lipid-loaded adipocytes is regulated by a network of transcription factors, the most prominent one being the nuclear receptor peroxisome proliferator-activated receptor (PPAR) gamma. However, many of the other 47 members of the nuclear receptor superfamily have an impact on adipogenesis, which in human cells has not been investigated in detail. Methodology/Principal Findings: We analyzed by quantitative PCR all human nuclear receptors at multiple time points during differentiation of SGBS pre-adipocytes. The earliest effect was the down-regulation of the genes RARG, PPARD, REVERBA, REV-ERBB, VDR and GR followed by the up-regulation of PPARG, LXRA and AR. These observations are supported with data from 3T3-L1 mouse pre-adipocytes and primary human adipocytes. Investigation of the effects of the individual differentiation mix components in short-term treatments and of their omission from the full mix showed that the expression levels of the early-regulated nuclear receptor genes were most affected by the glucocorticoid receptor (GR) ligand cortisol and the phosophodiesterase inhibitor IBMX. Interestingly, the effects of both compounds converged to repress the genes PPARD, REV-ERBA, REV-ERBB, VDR and GR, whereas cortisol and IBMX showed antagonistic interaction for PPARG, LXRA and AR causing a time lag in their up-regulation. We hypothesize that the well-known auto-repression of GR fine-tunes the detected early responses. Consistently, chromatin immunoprecipitation experiments showed that GR association increased on the transcription start sites of the genes RARG, REV-ERBB, VDR and GR. Conclusions/Significance: Adipocyte differentiation is a process, in which many members of the nuclear receptor superfamily change their mRNA expression. The actions of cortisol and IBMX converged to repress several nuclear receptors early in differentiation, while up-regulation of other nuclear receptor genes showed a time lag due to antagonisms of the signals. Our results place GR and its ligand cortisol as central regulatory factors controlling early regulatory events in human adipogenesis that precedes the regulation of the later events by PPARG

    Regulation of the human p21((waf1/cip1)) gene promoter via multiple binding sites for p53 and the vitamin D(3) receptor

    Get PDF
    The main regulator of the human tumor suppresser gene p21((waf1/cip1)) is the transcription factor p53, but more recently it has been suggested to be a primary anti-proliferative target for the nuclear receptor VDR in the presence of its ligand 1α,25-dihydroxyvitamin D(3) (1α,25(OH)(2)D(3)). To identify VDR responding regions, we analyzed 20 overlapping regions covering the first 7.1 kb of the p21((waf1/cip1)) promoter in MCF-7 human breast cancer cells using chromatin immuno-precipitation assays (ChIP) with antibodies against p53 and VDR. We confirmed two known p53 binding regions at approximate positions −1400 and −2300 and identified a novel site at position −4500. In addition, we found three VDR-associated promoter regions at positions −2300, −4500 and −6900, i.e. two regions showed binding for both p53 and VDR. In silico screening and in vitro binding assays using recombinant and in vitro translated proteins identified five p53 binding sites within the three p53-positive promoter regions and also five 1α,25(OH)(2)D(3) response elements within the three VDR-positive regions. Reporter gene assays confirmed the expected responsiveness of the respective promoter regions to the p53 inducer 5-fluorouracil and 1α,25(OH)(2)D(3). Moreover, re-ChIP assays confirmed the functionality of the three 1α,25(OH)(2)D(3)-reponsive promoter regions by monitoring simultaneous occupancy of VDR with the co-activator proteins CBP, SRC-1 and TRAP220. Taken together, we demonstrated that the human p21((waf1/cip1)) gene is a primary 1α,25(OH)(2)D(3)-responding gene with at least three VDR binding promoter regions, in two of which also p53 co-localizes

    Primary Vitamin D Target Genes of Human Monocytes

    Get PDF
    The molecular basis of vitamin D signaling implies that the metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) of the secosteroid vitamin D3 activates the transcription factor vitamin D receptor (VDR), which in turn modulates the expression of hundreds of primary vitamin D target genes. Since the evolutionary role of nuclear receptors, such as VDR, was the regulation of cellular metabolism, the control of calcium metabolism became the primary function of vitamin D and its receptor. Moreover, the nearly ubiquitous expression of VDR enabled vitamin D to acquire additional physiological functions, such as the support of the innate immune system in its defense against microbes. Monocytes and their differentiated phenotypes, macrophages and dendritic cells, are key cell types of the innate immune system. Vitamin D signaling was most comprehensively investigated in THP-1 cells, which are an established model of human monocytes. This includes the 1,25(OH)2D3-modulated cistromes of VDR, the pioneer transcription factors PU.1 and CEBPA and the chromatin modifier CTCF as well as of the histone markers of promoter and enhancer regions, H3K4me3 and H3K27ac, respectively. These epigenome-wide datasets led to the development of our chromatin model of vitamin D signaling. This review discusses the mechanistic basis of 189 primary vitamin D target genes identified by transcriptome-wide analysis of 1,25(OH)2D3-stimulated THP-1 cells and relates the epigenomic basis of four different regulatory scenarios to the physiological functions of the respective genes
    corecore