523 research outputs found
Constraints on Jupiters from Observations of Galactic bulge microlensing events during 2000
Peer reviewe
A Way to Reopen the Window for Electroweak Baryogenesis
We reanalyse the sphaleron bound of electroweak baryogenesis when allowing
deviations to the Friedmann equation. These modifications are well motivated in
the context of brane cosmology where they appear without being in conflict with
major experimental constraints on four-dimensional gravity. While suppressed at
the time of nucleosynthesis, these corrections can dominate at the time of the
electroweak phase transition and in certain cases provide the amount of
expansion needed to freeze out the baryon asymmetry without requiring a
strongly first order phase transition. The sphaleron bound is substantially
weakened and can even disappear so that the constraints on the higgs and stop
masses do not apply anymore. Such modification of cosmology at early times
therefore reopens the parameter space allowing electroweak baryogenesis which
had been reduced substantially given the new bound on the higgs mass imposed by
LEP. In contrast with previous attempts to turn around the sphaleron bound
using alternative cosmologies, we are still considering that the electroweak
phase transition takes place in a radiation dominated universe. The universe is
expanding fast because of the modification of the Friedmann equation itself
without the need for a scalar field and therefore evading the problem of the
decay of this scalar field after the completion of the phase transition and the
risk that its release of entropy dilutes the baryon asymmetry produced at the
transition.Comment: 19 pages, 3 figures; v2: minor changes, remark added at end of
section 5 and in caption of figure 1; v3: references added, version to be
publishe
Pathways into services for offenders with intellectual disabilities : childhood experience, diagnostic information and offence variables
The patterns and pathways into intellectual disability (ID) offender services were studied through case file review for 477 participants referred in one calendar year to community generic, community forensic, and low, medium, and maximum secure services. Data were gathered on referral source, demographic information, index behavior, prior problem behaviors, diagnostic information, and abuse or deprivation. Community referrers tended to refer to community services and secure service referrers to secure services. Physical and verbal violence were the most frequent index behaviors, whereas contact sexual offenses were more prominent in maximum security. Age at first incident varied with security, with the youngest in maximum secure services. Attention-deficit/hyperactivity disorder or conduct disorder was the most frequently recorded diagnosis, and severe deprivation was the most frequent adverse developmental experience. Fire starting, theft, and road traffic offenses did not feature prominently. Generic community services accepted a number of referrals with forensic-type behavior and had higher proportions of both women and people with moderate or severe ID
Density Matrix Renormalisation Group Approach to the Massive Schwinger Model
The massive Schwinger model is studied, using a density matrix
renormalisation group approach to the staggered lattice Hamiltonian version of
the model. Lattice sizes up to 256 sites are calculated, and the estimates in
the continuum limit are almost two orders of magnitude more accurate than
previous calculations. Coleman's picture of `half-asymptotic' particles at
background field theta = pi is confirmed. The predicted phase transition at
finite fermion mass (m/g) is accurately located, and demonstrated to belong in
the 2D Ising universality class.Comment: 38 pages, 18 figures, submitted to PR
Oregon 2100: Projected Climatic and Ecological Changes
28 pagesGreenhouse climatic warming is underway and exacerbated by human activities. Future outcomes of these processes can be projected using computer models checked against climatic changes during comparable past atmospheric compositions. This study gives concise quantitative predictions for future climate, landscapes, soils, vegetation, and marine and terrestrial animals of Oregon. Fossil fuel burning and other human activities by the year 2100 are projected to yield atmospheric CO2 levels of about 600-850 ppm (SRES A1B and B1), well above current levels of 400 ppm and preindustrial levels of 280 ppm. Such a greenhouse climate was last recorded in Oregon during the middle Miocene, some 16 million years ago. Oregonâs future may be guided by fossil records of the middle Miocene, as well as ongoing studies on the environmental tolerances of Oregon plants and animals, and experiments on the biological effects of global warming. As carbon dioxide levels increase, Oregonâs climate will move toward warm temperate, humid in the west and semiarid to subhumid to the east, with increased summer and winter drought in the west. Western Oregon lowlands will become less suitable for temperate fruits and nuts and Pinot Noir grapes, but its hills will remain a productive softwood forest resource. Improved pasture and winter wheat crops will become more widespread in eastern Oregon. Tsunamis and stronger storms will exacerbate marine erosion along the Oregon Coast, with significant damage to coastal properties and cultural resource
Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses
1 Plant species diversity drops when fertilizer is added or productivity increases. To explain this, the total competition hypothesis predicts that competition above ground and below ground both become more important, leading to more competitive exclusion, whereas the light competition hypothesis predicts that a shift from below-ground to above-ground competition has a similar effect. The density hypothesis predicts that more above-ground competition leads to mortality of small individuals of all species, and thus a random loss of species from plots. 2 Fertilizer was added to old field plots to manipulate both below-ground and above-ground resources, while shadecloth was used to manipulate above-ground resources alone in tests of these hypotheses. 3 Fertilizer decreased both ramet density and species diversity, and the effect remained significant when density was added as a covariate. Density effects explained only a small part of the drop in diversity with fertilizer. 4 Shadecloth and fertilizer reduced light by the same amount, but only fertilizer reduced diversity. Light alone did not control diversity, as the light competition hypothesis would have predicted, but the combination of above-ground and below-ground competition caused competitive exclusion, consistent with the total competition hypothesis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75695/1/j.1365-2745.2001.00662.x.pd
Improving Research Enrollment of Severe Burn Patients
Enrolling severely burn injured patients into prospective research studies poses specific challenges to investigators. The authors describe their experience of recruiting adults with â„20% TBSA burns or inhalation injury admitted to a single academic burn unit into observational research with minimally invasive specimen collection. The authors outline iterative changes that they made to their recruitment processes in response to perceived weaknesses leading to delays in enrollment. The primary outcome was the change in days to consent for enrolled patients or cessation of recruitment for nonenrolled patients before and after the interventional modifications. The authors assessed change in overall enrollment as a secondary outcome. Study enrollment was approximately 70% in both 4-month study periods before and after the intervention. Following the intervention, time to consent by surrogate decision maker decreased from a median of 26.5 days (interquartile range [IQR] 14-41) to 3 days (IQR 3-6) (P =.004). Time to initial consent by patient changed from a median of 15 days (IQR 2-30) to 3 days (IQR 2-6) (P =.27). Time to decline for nonenrolled patients decreased from a median of 12 days (IQR 6.5-27) to 1.5 days (IQR 1-3.5) (P =.026). Both the findings of the study and a brief literature review suggest that careful design of the recruitment protocol, increased experience of the study team, and broad time windows for both approach and enrollment improve the efficiency of recruiting critically injured burn patients into research
Electronic cigarettes: A position statement from the Thoracic Society of Australia and New Zealand*
The TSANZ develops position statements where insufficient data exist to write formal clinical guidelines. In 2018, the TSANZ addressed the question of potential benefits and health impacts of electronic cigarettes (EC). The working party included groups focused on health impacts, smoking cessation, youth issues and priority populations. The 2018 report on the Public Health Consequences of E-Cigarettes from the United States NASEM was accepted as reflective of evidence to mid-2017. A search for papers subsequently published in peer-reviewed journals was conducted in August 2018. A small number of robust and important papers published until March 2019 were also identified and included. Groups identified studies that extended, modified or contradicted the NASEM report. A total of 3793 papers were identified and reviewed, with summaries and draft position statements developed and presented to TSANZ membership in April 2019. After feedback from members and external reviewers, a collection of position statements was finalized in December 2019. EC have adverse lung effects and harmful effects of long-term use are unknown. EC are unsuitable consumer products for recreational use, part-substitution for smoking or long-term exclusive use by former smokers. Smokers who require support to quit smoking should be directed towards approved medication in conjunction with behavioural support as having the strongest evidence for efficacy and safety. No specific EC product can be recommended as effective and safe for smoking cessation. Smoking cessation claims in relation to EC should be assessed by established regulators
High-contrast imaging constraints on gas giant planet formation - The Herbig Ae/Be star opportunity
Planet formation studies are often focused on solar-type stars, implicitly
considering our Sun as reference point. This approach overlooks, however, that
Herbig Ae/Be stars are in some sense much better targets to study planet
formation processes empirically, with their disks generally being larger,
brighter and simply easier to observe across a large wavelength range. In
addition, massive gas giant planets have been found on wide orbits around early
type stars, triggering the question if these objects did indeed form there and,
if so, by what process. In the following I briefly review what we currently
know about the occurrence rate of planets around intermediate mass stars,
before discussing recent results from Herbig Ae/Be stars in the context of
planet formation. The main emphasis is put on spatially resolved polarized
light images of potentially planet forming disks and how these images - in
combination with other data - can be used to empirically constrain (parts of)
the planet formation process. Of particular interest are two objects, HD100546
and HD169142, where, in addition to intriguing morphological structures in the
disks, direct observational evidence for (very) young planets has been
reported. I conclude with an outlook, what further progress we can expect in
the very near future with the next generation of high-contrast imagers at 8-m
class telescopes and their synergies with ALMA.Comment: Accepted by Astrophysics and Space Science as invited short review in
special issue about Herbig Ae/Be stars; 12 pages incl. 5 figures, 2 tables
and reference
- âŠ