2,619 research outputs found

    A social solution to the puzzle of doxastic responsibility: a two-dimensional account of responsibility for belief

    Get PDF
    In virtue of what are we responsible for our beliefs? I argue that doxastic responsibility has a crucial social component: part of being responsible for our beliefs is being responsible to others. I suggest that this responsibility is a form of answerability with two distinct dimensions: an individual and an interpersonal dimension. While most views hold that the individual dimension is grounded in some form of control that we can exercise over our beliefs, I contend that we are answerable for our beliefs as long as they reflect our evaluative commitments and dispositions, or are products of our reasoning, where this does not amount to a form of control. I next argue that answerability has a second, largely neglected dimension: the interpersonal dimension, which is grounded in what I call our relations of doxastic dependence. As social creatures, we depend on one another in our capacity as believers. We depend on one another as believers not only in epistemic ways, but also in practical ways, because our beliefs inform and motivate our actions, and allow us to participate in shared practical goals. Depending on one another in these ways is an unavoidable part of cooperating in the shared project of pursuing epistemic and practical success, and it makes us vulnerable to both epistemic and moral harm. It is because of this, I argue, that answerability has interpersonal normative force upon us: we are subject to legitimate expectations associated with participating in relations of doxastic dependence

    Doxastic responsibility, guidance control, and ownership of belief

    Get PDF
    ABSTRACTThe contemporary debate over responsibility for belief is divided over the issue of whether such responsibility requires doxastic control, and whether this control must be voluntary in nature. It has recently become popular to hold that responsibility for belief does not require voluntary doxastic control, or perhaps even any form of doxastic ‘control’ at all. However, Miriam McCormick has recently argued that doxastic responsibility does in fact require quasi-voluntary doxastic control: “guidance control,” a complex, compatibilist form of control. In this paper, I pursue a negative and a positive task. First, I argue that grounding doxastic responsibility in guidance control requires too much for agents to be the proper targets for attributions of doxastic responsibility. I will focus my criticisms on three cases in which McCormick's account gives the intuitively wrong verdict. Second, I develop a modified conception of McCormick's notion of “ownership of belief,” which I call Weak Doxastic Ownership. I employ this conception to argue that responsibility for belief is possible even in the absence of guidance control. In doing so, I argue that the notion of doxastic ownership can do important normative work in grounding responsibility for belief without being subsumed under or analyzed in terms of the notion of doxastic control

    The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys

    Full text link
    The distribution of asteroids across the Main Belt has been studied for decades to understand the compositional distribution and what that tells us about the formation and evolution of our solar system. All-sky surveys now provide orders of magnitude more data than targeted surveys. We present a method to bias-correct the asteroid population observed in the Sloan Digital Sky Survey (SDSS) according to size, distance, and albedo. We taxonomically classify this dataset consistent with the Bus and Bus-DeMeo systems and present the resulting taxonomic distribution. The dataset includes asteroids as small as 5 km, a factor of three in diameter smaller than in previous works. Because of the wide range of sizes in our sample, we present the distribution by number, surface area, volume, and mass whereas previous work was exclusively by number. While the distribution by number is a useful quantity and has been used for decades, these additional quantities provide new insights into the distribution of total material. We find evidence for D-types in the inner main belt where they are unexpected according to dynamical models of implantation of bodies from the outer solar system into the inner solar system during planetary migration (Levison et al. 2009). We find no evidence of S-types or other unexpected classes among Trojans and Hildas, albeit a bias favoring such a detection. Finally, we estimate for the first time the total amount of material of each class in the inner solar system. The main belt's most massive classes are C, B, P, V and S in decreasing order. Excluding the four most massive asteroids, Ceres, Pallas, Vesta and Hygiea that heavily skew the values, primitive material (C-, P-types) account for more than half main-belt and Trojan asteroids by mass, most of the remaining mass being in the S-types. All the other classes are minor contributors to the material between Mars and Jupiter.Comment: Accepted for publication in Icarus -- 43 pages, 15 figures, 7 table

    Comments on ''Wave damping computation for a viscous liquid of finite depth'' by F. Biesel, La Houille Blanche, no. 5, 630-634 /1949/

    Get PDF
    Validity of wave damping computation for viscous liquid of finite dept

    Spectral properties of near-Earth and Mars-crossing asteroids using Sloan photometry

    Full text link
    The nature and origin of the asteroids orbiting in near-Earth space, including those on a potentially hazardous trajectory, is of both scientific interest and practical importance. We aim here at determining the taxonomy of a large sample of near-Earth (NEA) and Mars-crosser (MC) asteroids and analyze the distribution of these classes with orbit. We use this distribution to identify their source regions and to study the strength of planetary encounters to refresh asteroid surfaces. We measure the photometry of these asteroids over four filters at visible wavelengths on images taken by the SDSS. These colors are used to classify the asteroids into a taxonomy consistent with the widely used Bus-DeMeo taxonomy based on spectroscopy. We report here on the taxonomic classification of 206 NEAs and 776 MCs determined from SDSS photometry, representing an increase of 40% and 663% of known taxonomy classifications in these populations. Using the source region mapper by Greenstreet et al. (2012), we compare the taxonomic distribution among NEAs and main-belt asteroids of similar diameters. Both distributions agree at the few percent level for the inner part of the Main Belt and we confirm this region as a main source of near-Earth objects. The effect of planetary encounters on asteroid surfaces are also studied by developing a simple model of forces acting on a surface grain during planetary encounter, which provides the minimum distance at which a close approach should occur to trigger resurfacing events. By integrating numerically the orbit of the 519 S-type and 46 Q-type asteroids back in time and monitoring their encounter distance with planets, we seek to understand the conditions for resurfacing events. The population of Q-type is found to present statistically more encounters with Venus and the Earth than S-types, although both types present the same amount of encounters with Mars.Comment: Accepted for publication in Icarus. 45 pages, 11 figures, 4 tables, 2 tables in appendix (supplementary material

    Precovery of near-Earth asteroids by a citizen-science project of the Spanish Virtual Observatory

    Full text link
    This article describes a citizen-science project conducted by the Spanish Virtual Observatory (SVO) to improve the orbits of near-Earth asteroids (NEAs) using data from astronomical archives. The list of NEAs maintained at the Minor Planet Center (MPC) is checked daily to identify new objects or changes in the orbital parameters of already catalogued objects. Using NEODyS we compute the position and magnitude of these objects at the observing epochs of the 938 046 images comprising the Eigth Data Release of the Sloan Digitised Sky Survey (SDSS). If the object lies within the image boundaries and the magnitude is brighter than the limiting magnitude, then the associated image is visually inspected by the project's collaborators (the citizens) to confirm or discard the presence of the NEA. If confirmed, accurate coordinates and, sometimes, magnitudes are submitted to the MPC. Using this methodology, 3,226 registered users have made during the first fifteen months of the project more than 167,000 measurements which have improved the orbital elements of 551 NEAs (6% of the total number of this type of asteroids). Even more remarkable is the fact that these results have been obtained at zero cost to telescope time as NEAs were serendipitously observed while the survey was being carried out. This demonstrates the enormous scientific potential hidden in astronomical archives. The great reception of the project as well as the results obtained makes it a valuable and reliable tool for improving the orbital parameters of near-Earth asteroids.Comment: 9 pages, 5 figures. Accepted in Astron. Nach

    First disk-resolved spectroscopy of (4) Vesta

    Full text link
    Vesta, the second largest Main Belt asteroid, will be the first to be explored in 2011 by NASA's Dawn mission. It is a dry, likely differentiated body with spectrum suggesting that is has been resurfaced by basaltic lava flows, not too different from the lunar maria. Here we present the first disk-resolved spectroscopic observations of an asteroid from the ground. We observed (4) Vesta with the ESO-VLT adaptive optics equipped integral-field near-infrared spectrograph SINFONI, as part of its science verification campaign. The highest spatial resolution of ~90 km on Vesta's surface was obtained during excellent seeing conditions (0.5") in October 2004. We observe spectral variations across Vesta's surface that can be interpreted as variations of either the pyroxene composition, or the effect of surface aging. We compare Vesta's 2 micron absorption band to that of howardite-eucrite-diogenite (HED) meteorites that are thought to originate from Vesta, and establish particular links between specific regions and HED subclasses. The overallcomposition is found to be mostly compatible with howardite meteorites, although a small area around 180 deg. East longitude could be attributed to a diogenite-rich spot. We finally focus our spectral analysis on the characteristics of Vesta's bright and dark regions as seen from Hubble Space Telescope's visible and Keck-II's near-infrared images.Comment: 13 pages, 11 figures, 3 table

    Prediction of transits of solar system objects in Kepler/K2 images: An extension of the Virtual Observatory service SkyBoT

    Full text link
    All the fields of the extended space mission Kepler/K2 are located within the ecliptic. Many solar system objects thus cross the K2 stellar masks on a regular basis. We aim at providing to the entire community a simple tool to search and identify solar system objects serendipitously observed by Kepler. The SkyBoT service hosted at IMCCE provides a Virtual Observatory (VO) compliant cone-search that lists all solar system objects present within a field of view at a given epoch. To generate such a list in a timely manner, ephemerides are pre-computed, updated weekly, and stored in a relational database to ensure a fast access. The SkyBoT Web service can now be used with Kepler. Solar system objects within a small (few arcminutes) field of view are identified and listed in less than 10 sec. Generating object data for the entire K2 field of view (14{\deg}) takes about a minute. This extension of the SkyBot service opens new possibilities with respect to mining K2 data for solar system science, as well as removing solar system objects from stellar photometric time-series

    Asteroid Models from Multiple Data Sources

    Full text link
    In the past decade, hundreds of asteroid shape models have been derived using the lightcurve inversion method. At the same time, a new framework of 3-D shape modeling based on the combined analysis of widely different data sources such as optical lightcurves, disk-resolved images, stellar occultation timings, mid-infrared thermal radiometry, optical interferometry, and radar delay-Doppler data, has been developed. This multi-data approach allows the determination of most of the physical and surface properties of asteroids in a single, coherent inversion, with spectacular results. We review the main results of asteroid lightcurve inversion and also recent advances in multi-data modeling. We show that models based on remote sensing data were confirmed by spacecraft encounters with asteroids, and we discuss how the multiplication of highly detailed 3-D models will help to refine our general knowledge of the asteroid population. The physical and surface properties of asteroids, i.e., their spin, 3-D shape, density, thermal inertia, surface roughness, are among the least known of all asteroid properties. Apart for the albedo and diameter, we have access to the whole picture for only a few hundreds of asteroids. These quantities are nevertheless very important to understand as they affect the non-gravitational Yarkovsky effect responsible for meteorite delivery to Earth, or the bulk composition and internal structure of asteroids.Comment: chapter that will appear in a Space Science Series book Asteroids I

    Unexpected D-type Interlopers in the Inner Main Belt

    Full text link
    Very red featureless asteroids (spectroscopic D-types) are expected to have formed in the outer solar system far from the sun. They comprise the majority of asteroids in the Jupiter Trojan population, and are also commonly found in the outer main belt and among Hildas. The first evidence for D-types in the inner and middle parts of the main belt was seen in the Sloan Digital Sky Survey (SDSS). Here we report follow-up observations of SDSS D-type candidates in the near-infrared. Based on follow up observations of 13 SDSS D-type candidates, we find a ~20% positive confirmation rate. Known inner belt D-types range in diameter from roughly 7 to 30 kilometers. Based on these detections we estimate there are ~100 inner belt D-types with diameters between 2.5 and 20km. The lower and upper limits for total mass of inner belt D-types is 2x101610^{16} kg to 2x101710^{17} kg which represents 0.01% to 0.1% of the mass of the inner belt. The inner belt D-types have albedos at or above the upper end typical for D-types which raises the question as to whether these inner belt bodies represent only a subset of D-types, they have been altered by external factors such as weathering processes, or if they are compositionally distinct from other D-types. All D-types and candidates have diameters less than 30km, yet there is no obvious parent body in the inner belt. Dynamical models have yet to show how D-types originating from the outer solar system could penetrate into the inner reaches of the Main Belt under current scenarios of planet formation and subsequent Yarkovsky drift.Comment: 16 pages, 3 figures, 4 tables -- accepted for publication in Icaru
    corecore