31 research outputs found

    Using Human Pluripotent Stem Cell-Derived Neural Cultures to Assess Safety of New Drugs and Chemicals

    Get PDF
    The central nervous system (CNS) is a central pillar in safety pharmacology studies of new drugs. Characterization of serious adverse drug reactions to a new chemical entity involves extensive investigation using in vitro and in vivo models. However, primary culture of human neurons in vitro can be challenging, giving limited sample availability. Additionally, the inter-species differences between humans and current animal models impose a considerable obstacle to successfully predict the outcome of new drugs. New technologies also need to help address the 3Rs principles in animal research. Human pluripotent stem cells (hPSC) have the potential to change the current paradigm in pharmacological research. By using hPSCs and state-of-the-art differentiation protocols, researchers now have available an unlimited source of neural cells, able to mimic early and late stage of human CNS development. Moreover, hPSC-derived cells can be used at early stages of drug development, improving clinical predictability and reducing overall drug development costs. This chapter covers the advancements that resulted in hPSC-derived models intended to enable neurotoxicity assessment and drug screening. Finally, this chapter will also reveal the bottlenecks and the challenges to overcome of using hPSC as a predictive tool in research

    Proteomic analyses reveal misregulation of LIN28 expression and delayed timing of glial differentiation in human iPS cells with MECP2 loss-of-function.

    Get PDF
    Rett syndrome (RTT) is a pervasive developmental disorder caused by mutations in MECP2. Complete loss of MECP2 function in males causes congenital encephalopathy, neurodevelopmental arrest, and early lethality. Induced pluripotent stem cell (iPSC) lines from male patients harboring mutations in MECP2, along with control lines from their unaffected fathers, give us an opportunity to identify some of the earliest cellular and molecular changes associated with MECP2 loss-of-function (LOF). We differentiated iPSC-derived neural progenitor cells (NPCs) using retinoic acid (RA) and found that astrocyte differentiation is perturbed in iPSC lines derived from two different patients. Using highly stringent quantitative proteomic analyses, we found that LIN28, a gene important for cell fate regulation and developmental timing, is upregulated in mutant NPCs compared to WT controls. Overexpression of LIN28 protein in control NPCs suppressed astrocyte differentiation and reduced neuronal synapse density, whereas downregulation of LIN28 expression in mutant NPCs partially rescued this synaptic deficiency. These results indicate that the pathophysiology of RTT may be caused in part by misregulation of developmental timing in neural progenitors, and the subsequent consequences of this disruption on neuronal and glial differentiation

    Survival of syngeneic and allogeneic iPSC–derived neural precursors after spinal grafting in minipigs

    Get PDF
    The use of autologous (or syngeneic) cells derived from induced pluripotent stem cells (iPSCs) holds great promise for future clinical use in a wide range of diseases and injuries. It is expected that cell replacement therapies using autologous cells would forego the need for immunosuppression, otherwise required in allogeneic transplantations. However, recent studies have shown the unexpected immune rejection of undifferentiated autologous mouse iPSCs after transplantation. Whether similar immunogenic properties are maintained in iPSC-derived lineage-committed cells (such as neural precursors) is relatively unknown. We demonstrate that syngeneic porcine iPSC-derived neural precursor cell (NPC) transplantation to the spinal cord in the absence of immunosuppression is associated with long-term survival and neuronal and glial differentiation. No tumor formation was noted. Similar cell engraftment and differentiation were shown in spinally injured transiently immunosuppressed swine leukocyte antigen (SLA)–mismatched allogeneic pigs. These data demonstrate that iPSC-NPCs can be grafted into syngeneic recipients in the absence of immunosuppression and that temporary immunosuppression is sufficient to induce long-term immune tolerance after NPC engraftment into spinally injured allogeneic recipients. Collectively, our results show that iPSC-NPCs represent an alternative source of transplantable NPCs for the treatment of a variety of disorders affecting the spinal cord, including trauma, ischemia, or amyotrophic lateral sclerosis

    Supplemental Figures and Tables

    No full text
    Supplemental figures and tables for neurospheroid articles. Shows examples of primary data, images, also provides tables with correlation coefficient

    Assay optimization data_

    No full text
    Assay optimization data_ the table contains optimization data for selected compounds and control

    SupplementaryTable 3. Benchmark Concentrations

    No full text
    SupplementaryTable 3. Benchmark Concentrations.The table contains benchmark concentrations and other statistical data generated from the dataset presented in the Supplementary Table 2

    Supplemental Table 2

    No full text
    Supplemental Table 2 presents PRIMARY DATA for calcium oscillation and viability read-outs for effects of compounds from neurotoxicity librar

    Supplemental Table 1

    No full text
    Supplemental Table 1 for neurospheroid paper. Table contains the list of tested chemicals
    corecore