477 research outputs found

    A phylogenetic supertree of the fowls (Galloanserae, Aves)

    Get PDF
    The fowls (Anseriformes and Galliformes) comprise one of the major lineages of birds and occupy almost all biogeographical regions of the world. The group contains the most economically important of all bird species, each with a long history of domestication, and is an ideal model for studying ecological and evolutionary patterns. Yet, despite the relatively large amount of systematic attention fowls have attracted because of their socio-economic and biological importance, the species-level relationships within this clade remain controversial. Here we used the supertree method matrix representation with parsimony to generate a robust estimate of species-level relationships of fowls. The supertree represents one of the most comprehensive estimates for the group to date, including 376 species (83.2% of all species; all 162 Anseriformes and 214 Galliformes) and all but one genera. The supertree was well-resolved (81.1%) and supported the monophyly of both Anseriformes and Galliformes. The supertree supported the partitioning of Anseriformes into the three traditional families Anhimidae, Anseranatidae, and Anatidae, although it provided relatively poor resolution within Anatidae. For Galliformes, the majority-rule supertree was largely consistent with the hypothesis of sequential sister-group relationships between Megapodiidae, Cracidae, and the remaining Galliformes. However, our species-level supertree indicated that more than 30% of the polytypic genera examined were not monophyletic, suggesting that results from genus-level comparative studies using the average of the constituent species’ traits should be interpreted with caution until analogous species-level comparative studies are available. Poorly resolved areas of the supertree reflect gaps or outstanding conflict within the existing phylogenetic database, highlighting areas in need of more study in addition to those species not present on the tree at all due to insufficient information. Even so, our supertree will provide a valuable foundation for understanding the diverse biology of fowls in a robust phylogenetic framework

    Dimensionally Regulated Graviton 1-Point Function in de Sitter

    Full text link
    We use dimensional regularization to compute the 1PI 1-point function of quantum gravity at one loop order in a locally de Sitter background. As with other computations, the result is a finite constant at this order. It corresponds to a small positive renormalization of the cosmological constant.Comment: 25 pages, LaTeX 2epsilon, uses Axodraw for one figure, revised to add some reference

    Unwrapping Closed Timelike Curves

    Full text link
    Closed timelike curves (CTCs) appear in many solutions of the Einstein equation, even with reasonable matter sources. These solutions appear to violate causality and so are considered problematic. Since CTCs reflect the global properties of a spacetime, one can attempt to change its topology, without changing its geometry, in such a way that the former CTCs are no longer closed in the new spacetime. This procedure is informally known as unwrapping. However, changes in global identifications tend to lead to local effects, and unwrapping is no exception, as it introduces a special kind of singularity, called quasi-regular. This "unwrapping" singularity is similar to the string singularities. We give two examples of unwrapping of essentially 2+1 dimensional spacetimes with CTCs, the Gott spacetime and the Godel universe. We show that the unwrapped Gott spacetime, while singular, is at least devoid of CTCs. In contrast, the unwrapped Godel spacetime still contains CTCs through every point. A "multiple unwrapping" procedure is devised to remove the remaining circular CTCs. We conclude that, based on the two spacetimes we investigated, CTCs appearing in the solutions of the Einstein equation are not simply a mathematical artifact of coordinate identifications, but are indeed a necessary consequence of General Relativity, provided only that we demand these solutions do not possess naked quasi-regular singularities.Comment: 29 pages, 9 figure

    Gauge Formulation for Higher Order Gravity

    Get PDF
    This work is an application of the second order gauge theory for the Lorentz group, where a description of the gravitational interaction is obtained which includes derivatives of the curvature. We analyze the form of the second field strenght, G=F+fAFG=\partial F +fAF, in terms of geometrical variables. All possible independent Lagrangians constructed with quadratic contractions of FF and quadratic contractions of GG are analyzed. The equations of motion for a particular Lagrangian, which is analogous to Podolsky's term of his Generalized Electrodynamics, are calculated. The static isotropic solution in the linear approximation was found, exhibiting the regular Newtonian behaviour at short distances as well as a meso-large distance modification.Comment: Published versio

    Delinquency and reputational orientations of adolescent at-risk and not-at-risk males and females

    Get PDF
    This research investigated differences in delinquent activities and the reputational orientations of at-risk and not-at-risk male and female adolescents. Initially, we sought to establish that adolescent males and females differed in these respects. This was found to be the case: males (n = 722) scored significantly higher than females (n = 738) on seven self-reported delinquency variables and on eight reputation enhancement variables pertaining to social deviance, non-conforming reputation, and power/evaluation private identity. When a sample of 31 at-risk females was subsequently pair-wise age matched with 31 not-at-risk females, at-risk females scored significantly higher on all delinquency variables other than school misdemeanors. These at-risk females also scored significantly higher on four reputation enhancement variables relating to social deviance and non-conformity. Given that at-risk females did not differ from their not-at-risk counterparts in level of involvement in school misdemeanors, we sought to determine whether this was also the case for at-risk and not-at-risk males. An age-matched sample of 91 pairs revealed that at-risk males reported significantly higher involvement than not-at-risk males in all aspects of delinquency, including school misdemeanors. They also sought a more non-conforming reputation. To explore the relationships between delinquency and reputation enhancement, a canonical correlation analysis was performed. All findings are discussed in the light of reputation enhancement theory. © 2008 Taylor & Franci

    Filtering out the cosmological constant in the Palatini formalism of modified gravity

    Full text link
    According to theoretical physics the cosmological constant (CC) is expected to be much larger in magnitude than other energy densities in the universe, which is in stark contrast to the observed Big Bang evolution. We address this old CC problem not by introducing an extremely fine-tuned counterterm, but in the context of modified gravity in the Palatini formalism. In our model the large CC term is filtered out, and it does not prevent a standard cosmological evolution. We discuss the filter effect in the epochs of radiation and matter domination as well as in the asymptotic de Sitter future. The final expansion rate can be much lower than inferred from the large CC without using a fine-tuned counterterm. Finally, we show that the CC filter works also in the Kottler (Schwarzschild-de Sitter) metric describing a black hole environment with a CC compatible to the future de Sitter cosmos.Comment: 22 pages, 1 figure, discussion extended, references added, accepted by Gen.Rel.Gra

    Answering a Basic Objection to Bang/Crunch Holography

    Full text link
    The current cosmic acceleration does not imply that our Universe is basically de Sitter-like: in the first part of this work we argue that, by introducing matter into *anti-de Sitter* spacetime in a natural way, one may be able to account for the acceleration just as well. However, this leads to a Big Crunch, and the Euclidean versions of Bang/Crunch cosmologies have [apparently] disconnected conformal boundaries. As Maldacena and Maoz have recently stressed, this seems to contradict the holographic principle. In the second part we argue that this "double boundary problem" is a matter not of geometry but rather of how one chooses a conformal compactification: if one chooses to compactify in an unorthodox way, then the appearance of disconnectedness can be regarded as a *coordinate effect*. With the kind of matter we have introduced here, namely a Euclidean axion, the underlying compact Euclidean manifold has an unexpectedly non-trivial topology: it is in fact one of the 75 possible underlying manifolds of flat compact four-dimensional Euclidean spaces.Comment: 29 pages, 3 figures, added references and comparison with "cyclic" cosmology, JHEP versio

    Some exact solutions of F(R) gravity with charged (a)dS black hole interpretation

    Full text link
    In this paper we obtain topological static solutions of some kind of pure F(R)F(R) gravity. The present solutions are two kind: first type is uncharged solution which corresponds with the topological (a)dS Schwarzschild solution and second type has electric charge and is equivalent to the Einstein-Λ\Lambda-conformally invariant Maxwell solution. In other word, starting from pure gravity leads to (charged) Einstein-Λ\Lambda solutions which we interpreted them as (charged) (a)dS black hole solutions of pure F(R)F(R) gravity. Calculating the Ricci and Kreschmann scalars show that there is a curvature singularity at r=0r=0. We should note that the Kreschmann scalar of charged solutions goes to infinity as r0r \rightarrow 0, but with a rate slower than that of uncharged solutions.Comment: 21 pages, 4 figures, generalization to higher dimensions, references adde

    Stability analysis of agegraphic dark energy in Brans-Dicke cosmology

    Full text link
    Stability analysis of agegraphic dark energy in Brans-Dicke theory is presented in this paper. We constrain the model parameters with the observational data and thus the results become broadly consistent with those expected from experiment. Stability analysis of the model without best fitting shows that universe may begin from an unstable state passing a saddle point and finally become stable in future. However, with the best fitted model, There is no saddle intermediate state. The agegraphic dark energy in the model by itself exhibits a phantom behavior. However, contribution of cold dark matter on the effective energy density modifies the state of teh universe from phantom phase to quintessence one. The statefinder diagnosis also indicates that the universe leaves an unstable state in the past, passes the LCDM state and finally approaches the sable state in future.Comment: 15 pages, 12 figure

    Resolving Curvature Singularities in Holomorphic Gravity

    Get PDF
    We formulate holomorphic theory of gravity and study how the holomorphy symmetry alters the two most important singular solutions of general relativity: black holes and cosmology. We show that typical observers (freely) falling into a holomorphic black hole do not encounter a curvature singularity. Likewise, typical observers do not experience Big Bang singularity. Unlike Hermitian gravity \cite{MantzHermitianGravity}, Holomorphic gravity does not respect the reciprocity symmetry and thus it is mainly a toy model for a gravity theory formulated on complex space-times. Yet it is a model that deserves a closer investigation since in many aspects it resembles Hermitian gravity and yet calculations are simpler. We have indications that holomorphic gravity reduces to the laws of general relativity correctly at large distance scales.Comment: 14 pages, 7 figure
    corecore