University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Papers in Natural Resources

Natural Resources, School of

2009

A phylogenetic supertree of the fowls (Galloanserae, Aves)

Soo Hyumg Eo University of Georgia, eosh@uga.edu

Olaf R.P. Bininda-Emonds *Carl von Ossietzky Universität Oldenburg*, olaf.bininda@uni-oldenburg.de

John P. Carroll University of Georgia, jcarroll2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/natrespapers Part of the <u>Natural Resources and Conservation Commons</u>, <u>Natural Resources Management and</u> <u>Policy Commons</u>, and the <u>Other Environmental Sciences Commons</u>

Eo, Soo Hyumg; Bininda-Emonds, Olaf R.P.; and Carroll, John P., "A phylogenetic supertree of the fowls (Galloanserae, Aves)" (2009). *Papers in Natural Resources*. 667.

http://digitalcommons.unl.edu/natrespapers/667

This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Published in *Zoologica Scripta* 38:5 (2009), pp. 465–481; doi: doi:10.1111/j.1463-6409.2008.00382 Copyright © 2009 Soo Hyung Eo, Olaf R. P. Bininda-Emonds and John P. Carroll. Published by the Norwegian Academy of Science and Letters and John Wiley. Used by permission. Submitted July 10, 2008, accepted December 5, 2008.

A phylogenetic supertree of the fowls (Galloanserae, Aves)

Soo Hyung Eo, Olaf R. P. Bininda-Emonds, & John P. Carroll

Corresponding author - Soo Hyung Eo and John P. Carroll, Warnell School of Forestry and Natural Resources,

University of Georgia, Athens, GA 30602, USA. email eosh@uga.edu, jcarroll@warnell.uga.edu

Olaf R. P. Bininda-Emonds, AGSystematik und Evolutionsbiologie, FakultätV-IBU, Carl von Ossietzky

Universität Oldenburg, 26111 Oldenburg, Germany, email olaf.bininda@uni-oldenburg.de

Abstract

The fowls (Anseriformes and Galliformes) comprise one of the major lineages of birds and occupy almost all biogeographical regions of the world. The group contains the most economically important of all bird species, each with a long history of domestication, and is an ideal model for studying ecological and evolutionary patterns. Yet, despite the relatively large amount of systematic attention fowls have attracted because of their socio-economic and biological importance, the species-level relationships within this clade remain controversial. Here we used the supertree method matrix representation with parsimony to generate a robust estimate of species-level relationships of fowls. The supertree represents one of the most comprehensive estimates for the group to date, including 376 species (83.2% of all species; all 162 Anseriformes and 214 Galliformes) and all but one genera. The supertree was well-resolved (81.1%) and supported the monophyly of both Anseriformes and Galliformes. The supertree supported the partitioning of Anseriformes into the three traditional families Anhimidae, Anseranatidae, and Anatidae, although it provided relatively poor resolution within Anatidae. For Galliformes, the majority-rule supertree was largely consistent with the hypothesis of sequential sister-group relationships between Megapodiidae, Cracidae, and the remaining Galliformes. However, our species-level supertree indicated that more than 30% of the polytypic genera examined were not monophyletic, suggesting that results from genus-level comparative studies using the average of the constituent species' traits should be interpreted with caution until analogous species-level comparative studies are available. Poorly resolved areas of the supertree reflect gaps or outstanding conflict within the existing phylogenetic database, highlighting areas in need of more study in addition to those species not present on the tree at all due to insufficient information. Even so, our supertree will provide a valuable foundation for understanding the diverse biology of fowls in a robust phylogenetic framework.

Introduction

The fowls (Galloanserae; ducks, chicken, and allies) are generally regarded as a monophyletic group (Sorenson *et al.* 2003; Cracraft *et al.* 2004; but see Olson & Fecuccia 1980; Ericson 1996, 1997) that, according to Dickinson (2003), consist of eight families with 452 species. Fowls, which are typically separated into duck-like (Anseriformes) and chicken like species (Galliformes), include the most economically important birds on earth. Many species in this group have a long history of domestication for socio-economic reasons (e.g. food, game, feather, or display, among others), including chicken (e.g. *Gallus Gallus*), quails (e.g. *Coturnix japonica* and *Colinus virginianus*), ring-necked pheasants (*Phasianus colchicus*), turkeys (e.g. *Meleagris gallopavo*), guinea fowls (e.g. *Numida* *meleagris*), peafowls (*Pavo cristatus*), ducks (e.g. *Anas plat-yrhynchos*), and geese (e.g. *Anser anser* and *A. cygnoides*). The global economic value of domesticated fowls is enormous. For example, more domestic chicken meat (over 68 million tons) than beef was produced worldwide in 2004 (FAO 2007). Income from eggs and poultry in the United States was approximately US \$29 billion in 2004 (USDA 2007). Hunting of migratory birds (e.g. ducks and geese) in the United States generates US \$1.3 billion annually for thousands of small businesses (USFWS 2007), and game shooting in the UK similarly supports some 70,000 full-time jobs (PACEC 2006).

Fowls are likewise of particular interest to many biologists. The group comprises the sister group of all remaining species of Neognathae [all living birds with the exception of tinamous (Tinamidae) and ratites (Struthionidae, Rheidae, Casuariidae, Dromaiidae, and Apterygidae)], and occupies almost all major biogeographical regions of the world (Cracraft et al. 2004). Despite this deep divergence and worldwide distribution, Anseriformes and Galliformes together possess extremely restricted extant species richness relative to their sister group (Neoaves), which covers over 9000 species (Dickinson 2003). Even so, fowls display a remarkable life-history and behavioral diversity as well as morphological plasticity (del Hoyo et al. 1992; Dunning 1993; del Hoyo et al. 1994; Kear 2005). For example, species within Galliformes show more than a 100-fold difference in body mass (e.g. from < 100 g for C. japonica to approximately 10,000 g for M. gallopavo), and more than a 20-fold difference in clutch size (e.g. from one for Lophura bulweri to approximately 20 for *Aepypodius arfakianus*). Many galliform species tend to be sedentary, whereas most Anseriform species migrate long distances. Within Galliformes, some grouse are characterized by adaptations to open habitats, whereas megapodes and cracids are adapted to forest habitats. Anseriformes are adapted generally to an aquatic lifestyle (e.g. webbed feet), but their reliance on the aquatic habitat differs widely among species. Swans and geese often feed on land at some distance from water, whereas most ducks forage in or close to water. Some fowl species (e.g. Crax alberti and A. laysanensis) are recognized as being critically endangered (IUCN 2007), whereas others (e.g. P. colchicus and A. platyrhynchos) are exploited as overabundant game species. Such remarkable diversity in Galloanserae makes it an exceptional group for studying a wide range of questions in ecology, evolution, conservation and management.

Biologists often employ a comparative approach to recognize, test, and interpret adaptive patterns and processes in ecology and evolution. To do so properly, a phylogenetic framework is essential to account for the nonindependence among taxa that arises through the process of descent with modification (Felsenstein 1985b; Harvey & Pagel 1991). Thus, a large, well-resolved (species-level) phylogeny, in addition to its systematic value, represents an indispensable tool for testing broad-scale hypotheses in nature, greatly increasing the statistical power of the associated comparative analyses. Currently, however, it is generally not possible to build large, comprehensive trees from a direct, conventional analysis of true biological characters, such as DNA sequences, due to uneven distribution of research effort across taxa resulting in insufficient homologous data (Sanderson et al. 2003; Bininda-Emonds 2005). This state of affairs also holds for Galloanserae, with a general lack of large species-level trees from any single molecular, morphological, or combined data set. To date, the most comprehensive trees for each of Anseriformes and Galliformes are genus-level trees, with Livezey (1997) summarizing the findings of several partial phylogenies for Anseriformes based on morphology and Crowe et al. (2006) deriving a tree for Galliformes from an analysis of morphological and molecular data from 158 out of the 292 extant species.

Instead, supertree analysis provides an alternative method to generate comprehensive and rigorous estimates of phylogeny (Sanderson et al. 1998; Bininda-Emonds et al. 2004a). Using formal algorithmic procedures, this method combines multiple existing and overlapping source trees, each ideally based on independent data sets (see Gatesy et al. 2002), and therefore is able to use more of the information present in the global systematic database. Supertree construction remains a controversial technique and has attracted repeated criticism because it uses only the topological information of the source trees and thus loses contact with the raw data (e.g. Springer& de Jong 2001; Gatesy et al. 2002). Biases in some methods have also been noted (e.g. Wilkinson et al. 2005, 2007). However, simulation studies have repeatedly shown that supertrees built with sufficiently large and numerous source trees represent the phylogenetic information provided by the source trees accurately (Bininda-Emonds & Sanderson 2001; Chen et al. 2003; Levasseur & Lapointe 2003; Piaggio-Talice et al. 2004). With these advantages, comprehensive supertrees have been built for a wide range of animals and plants, including all extant mammal species (Bininda-Emonds et al. 2007), seabirds (Kennedy & Page 2002), shorebirds (Thomas et al. 2004), oscine passerine birds (Jønsson & Fjeldså 2006), dinosaurs (Pisani *et al.* 2002), grasses (Salamin et al. 2002) and angiosperms (Davies et al. 2004). It is beyond the scope of this article to outline the arguments for and against supertree construction and the reader is directed instead to the relevant literature (e.g. Gatesy et al. 2002; Bininda-Emonds et al. 2003).

Here, we use the supertree method of matrix representation with parsimony (MRP; Baum 1992; Ragan 1992) to generate a robust estimate of species-level phylogenetic relationships within Galloanserae. The major objectives of this study are: (i) to provide a comprehensive, global view of the group's phylogenetic relationships; (ii) to compare this topology to other comprehensive fowl phylogenies based on the conventional analysis of molecular or morphological characters (e.g. Livezey 1997; Crowe *et al.* 2006); and (iii) to provide a phylogenetic framework for future comparative studies of fowl ecology, evolution, conservation and management.

Materials and methods

Source tree collection

Phylogenetic information for Galloanserae was collated from the published literature by searching online databases, the Web of Science and Zoological Record for the years 1971–2006. We used the following search terms: phylogen*, phenogram*, cladogram*, cladistic*, taxonom*, or fossil* (where the asterisks represent wildcards) in combination with any scientific name of each fowl order, family, subfamily, or genus (as given in Dickinson 2003) or any major fowl common name (e.g. fowl, gamebird, grouse, quail, pheasant, waterfowl, duck, goose, and swan). Additionally, we examined the references in the source articles we collected to obtain additional studies containing relevant phylogenetic information.

The protocol for inclusion or rejection of source trees was guided by the issues of data quality (e.g. data independence and duplication, see Gatesy et al. 2002) following the principles described in Bininda-Emonds et al. (2004b) and as implemented in Beck et al. (2006). Generally, only trees that were based on an actual analysis of a novel, independent data set were collected for our analysis. Reasons for the exclusion of potential source trees included the lack of any explicit underlying data set (e.g. as for taxonomies), the simple replication of the results of previous studies without any novel analysis, or an insufficient number of Galloanserae species for the tree to be phylogenetically informative in the context of this study. All nonindependent trees were retained at this stage, with corrections for any nonindependence being applied subsequently via down weighting (see below). Nonindependence could arise both between studies (e.g. through use of the same data set on an overlapping species sample) and/or within the same study (e.g. multiple analyses of the same data set using different optimization criteria). For example, gene trees derived from MT-CYB (cytochromeb) and MT-RNR1 (12S rDNA) were held to be independent and independent from a tree based on morphological data, even if they all appeared in the same article. By contrast, all phylogenies based on MT-CYB would be classified as nonindependent, regardless of whether or not they occur in different articles or which optimization criteria was used for analysis.

A total of 400 phylogenetic trees derived from molecular and/or non-molecular (e.g. morphological or behavioral) data, and obtained using distance (e.g. neighbor-joining) or character-based methods (e.g. parsimony, maximum likelihood, and Bayesian analysis) were included initially as source trees. A topology equivalent to the classification of Dickinson (2003) was also included as a 'seed tree' to increase taxonomic overlap among source trees while providing only limited and usually uncontroversial phylogenetic information. The use of seed trees has been shown to improve the resolution of the supertree and to decrease computation time in simulation (Bininda-Emonds & Sanderson 2001) and when, suitably down weighted, does not distort the final topology compared to that dictated by the 'real' source trees (see Beck et al. 2006). All information in the source trees was coded and stored exactly as it appeared in the (i.e. without any correction for apparent typos and/or synonyms in taxon names) into the tree window of MacClare (Maddison & Maddison 2000).

Standardization of taxon names

The set of 400 source trees, despite not including all extant species of Galloanserae, contained a total of 1368 taxon names because of the inclusion of numerous typos and synonyms (including the use of common names) for a given species (e.g. 'Chicken' or 'Gallus Gallus domestics' or 'Gallus Gallus 1' for Gallus Gallus), of higher-level taxon names (e.g. Gallus or Galliformes), or of extinct species (e.g. the Turtlejawed Moa-nalo, Chelychelynechen quassus) or of non-fowl species (e.g. the Rock Pigeon, Columba livia).

Therefore, where possible, the names of all terminal taxa were standardized to those in Dickinson (2003). Appropriate synonyms for unrecognized names were obtained primarily from the Integrated Taxonomic Information Service (ITIS: www.itis.gov) and secondarily from additional searches. All non-fowl species were synonymized to 'outgroup' and higher-level terminal taxa were synonymized to the type species of the taxon (e.g. both Gallus and Galliformes were synonymized to Gallus Gallus) following Bininda-Emonds et al. (2004b). Ambiguous names (e.g. 'Basal Anseriformes and Galliformes', 'Other Galliformes' or 'Partridge') and extinct taxa were pruned from the source trees. Synonymization was achieved using the Perl script synonoTree v2.1 (Bininda- Emonds et al. 2004b). SynonoTree also accounts for cases where the process of synonymization yields non-monophyletic species by outputting all possible permutations of a given source tree where each such species is represented only once in each of its possible placements. Finally, all trees containing the taxon 'outgroup' were rooted on this taxon, which was subsequently deleted. All other source trees were held to be unrooted. Trees that were synonymized so as to become phylogenetically uninformative (i.e. containing less than three or four species for rooted and unrooted trees, respectively) were deleted, as were any completely unresolved trees. Altogether the synonymization process reduced the number of source trees to 385 (from 108 published studies; including the seed tree) and 43 trees that represented additional permutations of 31 source trees. The identity of all trees, together with their final weights in the supertree analysis (see below) is provided in the online-only supplementary material I.

MRP supertree construction

Supertree construction used MRP, which represents by far the best investigated and most frequently used supertree method (Bininda-Emonds 2004). MRP operates by coding the topology of a tree as a series of binary pseudo characters, each pseudo character representing one informative node in the tree. Taxa derived from the node are scored as 1, those that are not, but are still present on the tree are scored as 0, and taxa present only on other trees in the entire set are scored as ?. The matrix representations of each tree are then combined into a single matrix for parsimony analysis. Normally an all-zero outgroup is added to the matrix. However, we used semirooted MRP coding (Bininda-Emonds *et al.* 2005) as implemented in the Perl script SuperMRP v1.2.1 in which the outgroup was scored with zeros only for rooted trees; for unrooted trees, it was scored as ?

The final MRP matrix consisted of 4713 pseudo characters that were differentially weighted across trees to account for source-tree nonindependence, whether at the level of the underlying data or because of permutations of a given tree arising from non-monophyletic taxa, again following the guidelines of Bininda-Emonds et al. (2004b). The source trees were initially subdivided according to data type, with sets of nonindependent studies within each category being determined on a case-by-case basis: mixed-data analyses (six sets for seven trees), molecular data (83 sets for 236 trees), morphological data (1 set for 59 trees), other data types (13 sets for 22 trees), and unspecified data (13 sets for 13 trees). Weighting was applied in a hierarchical fashion, first according to data set nonindependence and then to permutation nonindependence. For example, pseudo characters for each of the 59 trees in the single morphological data set received a weight of 0.017 = 1/59. However, the pseudo characters for the morphological study of Livezey (1991) were down weighted by an additional factor of two beyond this (to 0.008) to account for the two permutations of this tree generated by synonoTree. Similarly, weighting was applied separately for each set within a category. For example, of the 83 molecular data sets, those consisting of a single source tree received a relative weight of 1 (= 1/1), whereas those with five nonindependent trees (e.g. all *MT-CYB* trees) received a weight of 0.2 (= 1/5). Finally, the seed tree of Dickinson (2003) was given a weight of 0.001 (= at least six times smaller than any other source tree) to minimize its impact on the supertree topology beyond helping to stabilize the analysis. A nexus-formatted file listing the independent data sets and the weights applied to each is available from TreeBASE (Sanderson et al. 1994) under the study accession number xxx and matrix accession number xxx.

Parsimony analysis used PAUP* v4.0b10 (Swofford 2002) and employed a parsimony ratchet (Nixon 1999) consisting of 50 batches of 200 replicates initially, followed by a brute force search using all optimal trees found to that point as starting trees. During the reweighting steps, 25% of the MRP pseudo characters were selected at random and given a weight of two before being returned to their initial differential weights. Starting trees for each batch were obtained using a single randomaddition sequence. All searches used TBR branch-swapping. Ratchet searches allowed only a single tree to be retained at any given step, whereas the terminal brute force search allowed multiple trees. All instructions for the ratchet were produced by the Perl script perlRat v1.0.9 and implemented in PAUP* as a PAUP block. The initial ratchet analysis saved a maximum of 10,050 equally most parsimonious trees. These trees then served as the starting trees for the extended brute-force search saving up to 100,000 trees. The strict consensus trees from the initial and ratchet and subsequent brute force searches were identical, hinting that the ratchet had reached a form of 'convergence' in that the additional equally most parsimonious solutions showed conflict with existing areas of incongruence rather than generating new conflict (and thereby decreasing resolution). The final supertree was held to be the strict consensus of the set of 100,000 equally most parsimonious solutions (each of length 1418.607). Both it and a majority-rule consensus of the same set of trees have been deposited with TreeBASE (study accession number S2245).

Differential support within the supertree was determined using the rQS index as implemented in QualiTree v1.2.1 (Bininda-Emonds 2003; Price et al. 2005), which measures the amount of support and disagreement for a given node in the supertree among the set of source trees. As such, it avoids the inherent nonindependence between MRP pseudo characters, which violates the assumptions underlying such conventional support measures as the bootstrap (Felsenstein 1985a) or Bremer support (Bremer 1988) and causing them to be invalid in this context. An rQS value varies between +1 and -1, indicating that all sources trees support or contradict the nodes in question, respectively. Empirically, rQS values usually tend to be slightly negative (e.g. Price et al. 2005; Beck et al. 2006), reflecting the fact that many phylogenies are uninformative for a given node (thereby scoring zero for it) and those that are informative tend to conflict with one another, even if slightly. Therefore, even slightly positive rQS values should be taken to indicate good support. All rQS values for each node on the supertree, together with how many source trees support, conflict, or are equivocal with a given node, are presented in the online-only supplementary material II. All Perl scripts used in this study are freely available from http://www.uni-oldenburg.de/molekularesystematik/33997.html or from the second author on request.

Results and discussion

Taxonomic coverage and resolution

Our fowl supertree includes 376 species, comprising over 83% of all 452 fowl species recognized by Dickinson (2003) (Table 1). All 162 Anseriformes species and 74% of all 290 Galliformes species are present in the supertree. The distribution of the 108 studies yielding source trees shows that the number of phylogenetic studies for fowls has increased rapidly since the late 1980s, with a sharp increase in particular for studies using molecular data, either alone or in combination with morphological or other data sources (Fig. 1). Overall, Galloanserae are relatively well-characterized phylogenetically. The number of source trees per fowl species present in the tree (1.0) was more than that in supertrees of well-studied mammalian groups of comparable size [e.g. 0.6 in primates or bats (Purvis 1995; Jones *et al.* 2002), and 0.7 in carnivores

-					
Number of	Number of		Percent resolution (%	6)	
species recognized*	species covered in this study	Percent coverage (%)	Strict consensus	Majority rule	rQS
452	376	83.2	81.1	96.3	0.265
162	162	100	73.9	97.5	0.135
3	3	100	100	100	0.091
1	1	100	0	0	0
158	158	100	72.6	97.5	0.044
290	214	73.8	86.9	95.8	0.252
22	17	77.3	93.8	93.8	0.099
50	34	68	n/a	n/a	n/a
6	6	100	100	100	0.026
32	13	40.6	91.7	100	0.021
180	144	80	n/a	n/a	n/a
	Number of species recognized* 452 162 3 1 158 290 22 50 6 32 180	Number of species Number of species covered in this study 452 376 162 162 3 3 1 1 158 158 290 214 22 17 50 34 6 6 32 13 180 144	Number of species Number of species covered in this study Percent coverage (%) 452 376 83.2 162 162 100 3 3 100 1 1 100 158 158 100 290 214 73.8 22 17 77.3 50 34 68 6 6 100 32 13 40.6 180 144 80	Number of speciesNumber of species covered in this studyPercent coverage (%)Percent resolution (9 452 376 83.2 81.1 162 162 100 73.9 3 3 100 100 1 1 100 0 158 158 100 72.6 290 214 73.8 86.9 22 17 77.3 93.8 50 34 68 n/a 6 6 100 100 32 13 40.6 91.7 180 144 80 n/a	Number of speciesNumber of species covered in this studyPercent coverage (%)Percent resolution (%) 452 376 83.2 81.1 96.3 162 162 100 73.9 97.5 3 3 100 100 100 1 1 100 0 0 158 158 100 72.6 97.5 290 214 73.8 86.9 95.8 22 17 77.3 93.8 93.8 50 34 68 n/a n/a 6 6 100 100 100 32 13 40.6 91.7 100 180 144 80 n/a n/a

Table 1 Information for major clades of Gallanserae, including number of taxa recognized and covered in this study and summary statistics for the supertrees. n/a, not available.

* According to Dickinson (2003).

† Cracidae and Phasianidae were not monophyletic in the supertrees.

Fig. 1. Temporal distribution of source trees included in the Galloanserae supertree.

(Bininda-Emonds *et al.* 1999)], despite our more conservative source tree inclusion protocol. The value continues to exceed those of the mammalian supertrees even when we calculate it for all extant species, including those not present on the tree (0.83) to make it comparable to the mammal values.

The supertree highlights that poorly characterized species (i.e. those missing from the tree entirely or those found in only a few source trees) tend to belong to groups that themselves are not well-studied. For instance, the majority of species missing in the supertree are assigned to either Odontophoridae (59% missing), Cracidae (32% missing), or Phasianidae (20% missing). The uneven distribution of missing species often appears associated with issues of geography and/or accessibility of the species. For example, species of the genus Odontophorus, which represents almost half of all species in Odontophoridae (15 of 32), are found in Neotropical forests, but the genus is represented by only a single species (*Odontophorus gujanensis*) in the supertree. Similarly, only a single species out of the 20 in Arborophila (*Arborophila torqueola*), which

generally inhabit Southeast Asian tropical forests or high alpine meadows in the Himalayas and often in widely scattered populations, was present in the supertree. Obviously, deriving a complete phylogenetic estimate of Galloanserae will require an increase in future research effort towards these and other missing species.

Although the limit of 100 000 equally most parsimonious solutions was reached, the strict consensus of them was well resolved, containing 304 of a maximum possible 375 nodes (= 81.1%; Table 1). This degree of resolution was higher than that for many other supertrees of comparable scale, including those for primates (79%; Purvis 1995), carnivores (78%; Bininda-Emonds *et al.* 1999), marsupials (74%; Cardillo *et al.* 2004), bats (46%; Jones et al. 2002), whale and even-toed hoofed mammals (60%; Price et al. 2005), shorebirds (50%; Thomas *et al.* 2004), and seabirds (63%; Kennedy & Page 2002). Again, the degree of resolution varied across the tree and among the (monophyletic) families in particular, ranging from 73% for Anatidae to 100% for Anhimidae and Numididae. Smaller families tended to show greater resolution, possibly because of their being fewer nodes that are likely to vary, but even some relatively large families showed high resolution (e.g. 73% for the 15 species of Anatidae) indicating general consensus over their internal relationships. Some cases of decreased resolution among and within families appear to derive more from a lack of agreement among the source trees than from a lack of available information. For example, nearly full resolution (94%) for Megapodiidae was achieved on the basis of 373 pseudo characters. By contrast, relationships within Coturnix were completely unresolved despite having twice as much data available (726 pseudo characters). The occurrence of the poorly resolved groups in the supertree also highlights areas in need of more rigorous systematic analyses in the future.

Table 2. Genera that were either 'not monophyletic' or of
'questionable monophyly' (due to being unresolved with
respect to another taxon) in the strict consensus supertree.

Family	Genus	Status	
Anseriformes			
Anatidae	Dendrocygna	Not monophyletic	Fig. 3(B)
Anatidae	Tachyeres	Questionable monophyly	Fig. 3(B)
Anatidae	Tadorna	Not monophyletic	Fig. 3(B,F)
Anatidae	Nettapus	Not monophyletic	Fig. 3(C)
Anatidae	Netta	Questionable monophyly	Fig. 3(B)
Anatidae	Aythya	Questionable monophyly	Fig. 3(B)
Anatidae	Melanitta	Not monophyletic	Fig. 3(B,D)
Anatidae	Bucephala	Not monophyletic	Fig. 3(B,E)
Galliformes			
Megapodiidae	Aepypodius	Not monophyletic	Fig. 3(I)
Cracidae	Pipile	Not monophyletic	Fig. 3(A)
Cracidae	Mitu	Not monophyletic	Fig. 3(A)
Cracidae	Pauxi	Not monophyletic	Fig. 3(A)
Cracidae	Ortalis	Questionable monophyly	Fig. 3(A)
Cracidae	Penelope	Questionable monophyly	Fig. 3(A)
Phasianidae	Francolinus	Not monophyletic	Fig. 3(L,O)
Phasianidae	Syrmaticus	Not monophyletic	Fig. 3(N)
Phasianidae	Coturnix	Questionable monophyly	Fig. 3(O)

To date, the most comprehensive phylogenies for Anseriformes and Galliformes (Livezey 1997 and Crowe et al. 2006, respectively) have been at the genus- and not species levels. These trees necessarily assume the monophyly of each genus, often forcing the wide range of ecological and evolutionary hypotheses that have been examined using these trees to be based on the average of the respective biological characters of the constituent species (e.g. Keane et al. 2005; Kolmar al. 2007). Crucially, however, our species-level supertree showed that more than 30% of the polytypic genera were not monophyletic or of questionable monophyly (Table 2). This suggests that the results from the genus-level comparative studies using the average of the species' traits should be interpreted with caution until analogous species-level comparative studies are available.

Anseriformes-Galliformes relationships

The supertree supported the monophyly of each of the orders Anseriformes and Galliformes (Figs 2, 3), reflecting historical agreement on this point (but see Prager & Wilson 1976). In addition, both clades enjoyed high support as measured by the rQS index (0.252 for Anseriformes and 0.135 for Galliformes; node numbers 187 and 2, respectively), meaning that monophyly was directly specified by the majority of relevant source trees in each case.

Fig. 2. Simplified representation of the Galloanserae supertree, showing interrelationships of and relative species richness of the major higher-level groups. Numbers on nodes represent node IDs.

Fig. 3. A–P. Component supertrees of the fowl supertree showing species-level relationships. –A. Galloanserae. –B. Anatidae. –C. Anserinae. –D. Anatinae I. –E. Anatinae II. –F. Anatinae III. –G. Tadorinae. –H. Anas. –I. Megapodiidae. –J. Numididae. –K. Odontophoridae. –L. Phasianidae II. –M. Perdicinae. –N. Tetraoninae.

-O. Phasianinae I. -P. Phasianinae II. Numbers on nodes represent node IDs. rQS support values for each node on the supertree are presented in supplementary material II.

Anseriformes

The supertree supported the partitioning of Anseriformes into the three traditional families (Fig. 2) Anhimidae (screamers), the monotypic Anseranatidae (Magpie Goose), and Anatidae (ducks, geese, and swans). Anatidae was the sister group to the two other families, which was consistent with DNA-DNA hybridization (Sibley & Ahlquist 1990), and nuclear and mitochondrial DNA studies (e.g. Sorenson *et al.* 2003). This resolution, however, conflicted with some morphology-based topologies (e.g. Livezey 1997) and nuclear DNA studies (e.g. RAG-2 exon; see Cracraft *et al.* 2004), where Anhimidae formed the sister group. This uncertainty was also reflected in the slightly low rQS value (0.049; node number 302; Fig. 3A) for the clade containing both Anhimidae and Anseranatidae. Based on behavioral patterns, Delacour & Mayr (1945) split Anatidae into the two subfamilies Anserinae and Anatinae, a pattern followed by del Hoyo *et al.* (1992). This classification was amended recently by Livezey (1997) and Dickinson (2003), who each recognized five subfamilies, splitting Dendrocygninae and the monotypic Stictonettinae (Freckled Duck) from a redefined Anserinae, and Tadorninae from Anatinae. However, the supertree did not provide strong support for either scheme, with only Anserinae sensu Livezey (1997) and Dickinson (2003) being found to be monophyletic within a paraphyletic Anatinae (Fig. 3B).

The supertree revealed a paraphyletic Dendrocygninae with respect to the remaining Anatidae, placing it as the first group to evolve in Anatidae (Fig. 3B). This basal position of the subfamily reflected the majority of

Fig. 3. Continued.

the source topologies (e.g. Sibley & Ahlquist 1990; Livezey 1997). However, the internal relationships of Dendrocygninae in the supertree contradicted most traditional taxonomic groupings, including the monophyly of *Dendrocygna* (whistling ducks) and its sister group relationship with and *Thalassornis*.

The relative position of Stictonettinae also differed among the source references. Various authors have linked it with any of Dendrocygninae (Woolfenden 1961), Anserinae (Johnsgard 1965), or Tadorninae/Anatinae (Livezey 1997) based on morphological or behavioral characters. Our study also reflected this uncertainty, placing it in a polytomy with all other subfamilies (Fig. 3B).

Anserinae monophyly has been supported by both morphological (e.g. Livezey 1997) and molecular studies (e.g. Donne-Gousse *et al.* 2002), a fact reflected in our supertree (rQS = 0.042; node number 269; Fig. 3C), with 22 source trees supporting its monophyly and only six contradicting it. Resolution within Anserinae was complete and each of the three polytypic genera recognized by Dickinson (2003) (Anser, Branta, and Cygnus) were recovered as monophyletic (Fig. 3C). Anser and Branta formed a clade (rQS = 0.042; node number 270; 20 source trees in agreement and only four in conflict), consistent with the majority of studies recognizing them as the tribe Anserini (true geese, e.g. Livezey 1997). However, disagreement among the source trees about the interrelationships of Cygnus, Coscoroba and Cereopsis lead the relative position of these genera being somewhat equivocal in the supertree (rQS = -0.003 for the clade as a whole and rQS = 0.003for the grouping of Coscoroba and Cereopsis; Fig. 3C). For example, a morphological study (Livezey 1997) recognized the clade of Cygnus + Coscoroba as the tribe Cygnini (swans), and Cereopsis as the independent tribe Cereopsini, which was regarded as a distant relative to Cygnus + Anser + Branta. However, a recent molecular study placed Cereopsis and Coscoroba as sister genera, with Cygnus as sister to this clade (Donne-Gousse et al. 2002), as was found in this study (Fig. 3C). This latter branching pattern is also congruent with the disjunctive geographical origins

Fig. 3. Continued.

of the genera, with *Cygnus* originating in the Northern Hemisphere and the other two genera coming from the Southern Hemisphere (Donne-Gousse *et al.* 2002).

Strong disagreement exists with respect to the compositions of and interrelationships between Tadorninae and Anatinae, which is reflected in the supertree by neither subfamily being recovered as monophyletic (Fig. 3B). Nor do the two subfamilies form a clade (although the majority of their members do cluster together), with Anserinae embedded within them. For instance, whereas Dickinson (2003) did not delineate any tribes for the subfamilies in his classification, del Hoyo *et al.* (1992) divided Tadorninae + Anatinae into eight tribes. Independently of this, Livezey (1997) also divided Tadorninae into three tribes and Anatinae into five tribes. However, despite the similar numbers of tribes erected by these two authors, few are identical in terms of their composition (e.g. Tadornini, comprising Tadorna, Chloephaga, Neochen, Alopochen, and Cyanochen). Instead, different compositions are the rule. For example, whereas Livezey (1997) included Hymenolaimus in Merganettini (Tadorninae), del Hoyo *et al.* 1992 considered it to be part of Anatini (Anatinae).

This supertree reflected these disagreements, with only the tribe Malacorhynchini (comprising *Malacorhynchus* and *Salvadorina*) being recovered unequivocally as monophyletic (Tadornini was monophyletic in the majority-rule supertree), and then strongly so, with 12 source trees supporting the clade and none opposing it (rQS = 0.031; node number 298; Fig. 3D). Moreover, whereas Malacorhynchini formed a clade with Oxyurini (*Heteronetta, Biziura, Nomonyx,* and *Oxyura,* but also unconventionally including *Nettapus*), this clade was positioned as part of a polytomy with Anserinae (or basal to it in the majorityrule supertree), hinting at the possible non monophyly of Tadornine + Anatinae (Fig. 3B). Again, however, this uncertainty simply reflects historical disagreement. For

Fig. 3. Continued.

example, the DNA-DNA hybridization study of Sibley & Ahlquist (1990) placed the Oxyura as sister to the remaining Anatidae, which is broadly consistent with our results, but Malacorhynchini in Anatinae, and therefore not directly related to Oxyura. By contrast, morphological evidence (e.g. Livezey 1997) tends to place Malacorhynchini at the base of the whole Anatinae. Thus, the relative positions of Malacorhynchini and Oxyurini appear to differ between molecular and morphological data. This conflict was also reflected in the rQS value of -0.018 for the relationship between Malacorhynchini and its sister clade, with six source trees in agreement and 17 source trees in disagreement with this arrangement (node number 291; Fig. 3D).

Resolution within the remaining members of Tadorninae and Anatinae (which formed a clade) was generally poor (Fig. 3B,D-H), with the clade displaying a large basal polytomy and the poor resolution also extending from the tribal-level down through the genus- and species-levels. Only 46% (6 of 13) of the polytypic genera within Tadorninae + Anatinae were monophyletic in the supertree, and the entire clade was less than 70% resolved. The majority-rule supertree reveals better overall resolution for this clade (97%), and at the species- and the genus-levels in these subfamilies in particular. Resolution, however, remained poor at the higher taxonomic levels.

Galliformes

Traditionally, the relative positions between Megapodiidae (megapodes) and Cracidae (chachalacas, curassows, and guans), and among Numididae (guineafowls), Odontophoridae (New World quails), and Phasianidae (partridges, turkeys, grouse, and pheasants) have been contentious. Some authors suggested a sister-group relationship between Megapodiidae and Cracidae, designating them as the superfamily Cracoidea (Wetmore 1960),

the suborder Craci (del Hoyo et al. 1994), or even as the independent order Craciformes (Sibley & Ahlquist 1990). However, more recent phylogenies based on morphology (e.g. Dyke et al. 2003), molecular data (e.g. Dimcheff et al. 2002) or their combination (e.g. Crowe et al. 2006) all tend to support Megapodiidae as being sister to the remaining Galliformes (including Cracidae), with Cracidae then being sister to the remaining forms. Although relationships among these groups were unresolved in the strict consensus supertree (Fig. 3A), the majority-rule supertree broadly reflected this latter pattern, supporting the sequential sister-group relationships of Megapodiidae and Cracidae (with the exception of Ortalis vetula, thereby making Cracidae non-monophyletic), and the remaining Galliformes; these groups formed part of a large polytomy in the strict-consensus supertree (Figs 2, 3). Support for these sequential sister-group relationships also comes from recent studies based on transposon data (Kriegs et *al.* 2007) that were published after completion of the supertree analyses.

Our supertree supported Numididae as being sister to the remaining families Odontophoridae and Phasianidae, with the clade comprising all three families having a high rQS value of 0.252 (node number 9; Fig. 3A). This arrangement agrees with those derived from nuclear (e.g. Armstrong et al. 2001), mitochondrial (e.g. Dimcheff et al. 2002), and combined morphological and molecular data (e.g. Crowe et al. 2006). That being said, the position of Odontophoridae remains largely unresolved. For example, recent phylogenetic trees derived from DNA-DNA hybridization (e.g. Sibley & Ahlquist 1990), morphological (e.g. Dyke et al. 2003), and combined morphological and molecular data (e.g. Crowe et al. 2006) place the family in a variety of positions within Phasianidae. Our supertree follows suit and recovers Odontophoridae as a relatively basal group within Phasianidae. However, it is

Fig. 3. Continued.

noteworthy that most phylogenetic studies have included only a few species of Odontophoridae, such that we lack robust phylogenetic information for more than half of all species of this family. Thus, the relative position of Odontophoridae indicated here should likewise be regarded as tentative and should be revisited in the future with increased taxon sampling.

The monophyly of Megapodiidae was supported in the supertree (rQS = 0.099; node number 159; Fig. 3I) and relationships within the family were largely congruent with several traditional species-level phylogenies (e.g. Jones *et al.* 1995; Birks & Edwards 2002; Crowe *et al.* 2006). Support for the monophyly of the genus *Megapodius* in particular was strong, with 10 source trees supporting it and none directly opposing it (rQS = 0.026; node number 166). Macrocephalon was recovered as the sister to the clade of Eulipoa + *Megapodius* (rQS = 0.023; node number 164). Monophyly of *Aepypodius* was not supported.

The source trees did not support Cracidae monophyly absolutely (Fig. 3A), although the family is monophyletic in the majority-rule supertree (and found in 94% of all 100 000 equally most parsimonious solutions). Much of the conflict can be traced to the historical uncertainty regarding the two genera Oreophasis and Ortalis, which have been placed within either Cracinae (e.g. Crowe et al. 2006) or Penelopinae (e.g. del Hoyo et al. 1994; Dickinson 2003). The strict-consensus supertree makes no definitive statement to resolve this conflict (Fig. 3A); however, the majorityrule supertree suggests that the affinities of the two genera lie with Cracinae. However, Ortalis was not recovered as monophyletic in either supertree. Recent analyses combining molecular data with osteological, integumentary and behavioral characters placed Oreophasis and Ortalis within Penelopinae and not Cracinae, and with fairly robust bootstrap support (Frank- Hoeflich et al. 2007). As such, placement of these genera should still be regarded as tentative

Fig. 3. Continued.

and should be revisited with increased taxon sampling and possibly the use of other, novel data types. Beyond this, the subfamilies Cracinae (curassows) and Penelopinae (chachalacas and guans) were found to be monophyletic, although the degree of resolution within each varied considerably. Support for Cracinae was strong, with 26 source trees directly supporting and none directly contradicting it (rQS=0.068; node number 174; Fig. 3A). By contrast, relationships within Penelopinae were unclear, largely because of the non-monophyly of *Penelope*.

Monophyly of Numididae was directly supported by 12 source trees and contradicted by only two (rQS=0.026; node number 10; Fig. 3J). The species-level relationships in the family were completely resolved and each of the two polytypic genera (*Agelastes* and *Guttera*) was monophyletic. The branching pattern within the family disagreed with that presented by Crowe (1978), but was identical to that based later on combined morphological and molecular data (Crowe *et al.* 2006).

Similarly, monophyly of Odontophoridae was also supported, being present in eight source trees and none directly contradicting it (rQS = 0.021; node number 146; Fig. 3K). Relationships within the family were largely consistent with those based on a wide range of data types, including osteological (e.g. Holman 1961), ecological (e.g. Johnsgard 1983), allozyme (e.g. Gutierrez et al. 1983), and combined morphological and molecular data (e.g. Crowe et al. 2006). Philortyx fasciatus has been grouped traditionally with some genera adapted to the forest edge, such as Colinus, Callipepla, and Oreortyx (e.g. Holman 1961; Johnsgard 1983), but our supertree placed it as sister to the remaining Odontophoridae. Again, however, this relationship, and all other relationships within the family, should be interpreted with some degree of caution given the poor phylogenetic sampling effort in the family to date.

Within a polyphyletic Phasianidae, sequential sister-group relationships of the four subfamilies Perdicinae (partridges), Meleagridinae (turkeys), Tetraoninae

Fig. 3. Continued.

(grouses), and Phasianinae (pheasants) were broadly recovered in the supertree, albeit with some exceptions (Fig. 3A,L-P). The supertree revealed seven subdivisions of Perdicinae, six of which were monophyletic. The first was a paraphyletic assemblage of Rhizothera and the monotypic genera Galloperdix, Ptilopachus, Haematortyx, and Melanoperdix situated basal to Odontophoridae and the remaining Phasianidae (Fig. 3A). Among these genera, a sister-group relationship between Galloperdix and Ptilopachus was recovered, concurring with the results of Crowe et al. (2006). The second group (rQS = 0.042; node number 143; Fig. 3L) included Xenoperdix, Rollulus, Arborophila, and Caloperdix. The species composition and branching pattern within the group was in agreement with Crowe et al. (2006), who designated this group as Arborophilinae. Similarly, the third group (rQS = 0.044; node number 109; Fig. 3M) corresponds to Coturnicinae of Crowe et al. (2006) and comprises Old World quails, the partridges Coturnix and Alectoris, and some Francolinus species. Relationships within Coturnix were unresolved, however,

and its monophyly could also not be assured. The fourth group (rQS = -0.013; node number 107; Fig. 3L) consisted of Francolinus gularis, F. pictus, F. pintadeanus, and F. francolinus. In the fifth group, the monotypic Bambusicola formed a clade with the four species of *Gallus* (Fig. 3L). Although Gallus is typically allocated to Phasianinae, the grouping found in our supertree does find support in Crowe et al. (2006), who named it Gallininae. In addition, the sister-group relationship between Bambusicola and Gallus was highly supported with an rQS value of 0.075 (node number 91; Fig. 3L). The sixth group (rQS = -0.018; node number 95; Fig. 3L) consisted of the remaining Francolinus species, meaning that the supertree did not support the monophyly of the 41 species of Francolinus. Some authors, however, have suggested on the basis of morphological and molecular data that this genus be subdivided into at least five different genera (Pternistis, Francolinus, Dendroperdix, Peliperdix, and Scleroptila, e.g.Crowe et al. 1992; Crowe et al. 2006). Although our results did not reflect these generic designations exactly,

branching patterns within Francolinus and its relationships with other genera were largely congruent with those in Crowe *et al.* (1992). The final group, the genus *Perdix* (rQS = 0.031; node number 56; Fig. 3L), was placed as the sister taxon to the clade of Meleagridinae + Tetraoninae, albeit with some uncertainty (rQS = -0.005; node number 36; Fig. 3L), with 30 source trees contradicting this placement and 28 supporting it.

The sister-group relationship of Meleagridinae (two species in the genus *Meleagris*) and Tetraoninae was also not strongly supported (rQS = 0.003; node number 37; Fig. 3L), although the monophyly of each showed better support (rQS = 0.018 and 0.106; node number 55 and 38; Fig. 3L, N). Relationships within Tetraoninae were congruent with molecular (e.g. Gutierrez *et al.* 2000; Dimcheff *et al.* 2002; Drovetski 2002) and combined morphological and molecular data (e.g. Crowe *et al.* 2006). The only exception was the position of Lagopus, with the low rQS value of the clade containing Lagopus and its sister group (-0.062; node number 46; Fig. 3N) suggesting disagreement among the source trees.

The remaining Phasianinae (with the exception of *Gallus*) was split into the peafowl (e.g. *Pavo* and *Polyplectron*; rQS = -0.003; node number 24; Fig. 3O) and pheasant groups (e.g. *Lophura* and *Tragopan*; rQS = 0.005; node number 57; Fig. 3P) separated by the clade comprising *Perdix*, Meleagridinae, and Tetraoninae. Apart from this, the species composition and branching pattern within each group was highly congruent with phylogenetic trees based on molecular and morphological data (e.g. Crowe *et al.* 2006).

Conclusion

Our supertree represents a first attempt to derive a comprehensive species-level phylogeny of Galloanserae, again highlighting the power of a traditional supertree approach (*sensu* Bininda- Emonds 2004) in this regard. Those areas where the supertree was either poorly resolved or incomplete tend to reflect gaps in the existing phylogenetic database (either ongoing disagreement and/ or a lack of sufficient, robust phylogenetic information), and highlight areas in need of more study. Some of this missing information could perhaps be gleaned from taxonomies and other studies that are not based on the direct analysis of primary character data. However, given that strong disagreement often exists within the studies we have included here, we felt it prudent not to include these additional sources. Like any phylogenetic hypothesis, our supertree is naturally open to further revision and resolution. In the meantime, however, it will provide a valuable foundation to understand the diverse biology of Galloanserae in a robust phylogenetic framework.

Acknowledgments — Funding for SHE was provided by the University of Georgia, Warnell School of Forestry and Natural Resources, and the Northeast Georgia, Augusta, and Albany Chapters of Quail Unlimited. OBE was supported in part through a Heisenberg Fellowship from the Deutsche Forschungsgemeinschaft (BI 825/2-1; BI 825/3-2).

Supporting Information

Additional Supporting Information may be found following the References.

Supplementary Material I (25 pages)

Source trees used to construct the galloanserae supertree subdivided according to the independent data set they contributed to. The relative weights for the pseudo characters associated with each source tree are also provided. Number of permutations refers to the number of trees that resulted from the synonymization process because of having to accommodate nonmonophyletic taxa.

Supplementary Material II (12 pages)

rQS values for the strict consensus supertree, indicating nodal support (\pm SE) among the set of source trees together with the number of source trees supporting, conflicting or equivocal with a given node. Node numbers refer to Figs 2 and 3.

References

- Armstrong, M.H., Braun, E. L.& Kimball, R.T. (2001). Phylogenetic utility of avian ovomucoid intron G: A comparison of nuclear and mitochodrial phylogenies in Galliformes. Auk, 118, 799–804.
- Baum, B. R. (1992). Combining trees as a way of combining datasets for phylogenetic inference, and the desirability of combining gene trees. Taxon, 41, 3–10.
- Beck, R.M.D., Bininda-Emonds, O.R.P., Cardillo, M., Liu, F.-G. R. & Purvis, A. (2006). A higher-level MRP supertree of placental mammals. BMCE volutionary Biology, 6, 93.
- Bininda-Emonds, O.R.P. (2003). Novel versus unsupported clades: Assessing the qualitative support for clades in MRP supertrees. Systematic Biology, 52, 839–848.
- Bininda-Emonds, O.R.P. (2004). The evolution of supertrees. Trends in Ecology and Evolution, 19, 315–322.
- Bininda-Emonds, O.R.P. (2005). Supertree construction in the genomic age. In E. A. Zimmer & E. Roalson (Eds) Molecular Evolution: Producing the Biochemical Data, Part B, Methods in Enzymology, 395 (pp. 745–757). San Diego: Elsevier.
- Bininda-Emonds, O.R.P., Beck, R.M.D. & Purvis, A. (2005). Getting to the roots of matrix representation. Systematic Biology, 54,668–672.
- Bininda-Emonds, O.R.P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R. *et al.* (2007). The delayed rise of present-day mammals. Nature, 446, 507–512.
- Bininda-Emonds, O.R.P., Gittleman, J. L. & Purvis, A. (1999). Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biological Reviews, 74, 143–175.
- Bininda-Emonds, O.R.P., Gittleman, J. L. & Steel, M. A. (2004a). The supertree of life: Procedures, problems, and prospects. Annual Review of Ecology and Systematics, 33, 265–289.

- Bininda-Emonds, O.R.P., Jones, K. E., Price, S. A., Cardillo, M., Grenyer, R. & Purvis, A. (2004b). Garbage in, garbage out: Data issues in supertree construction. In O.R.P. Bininda-Emonds (Ed.) Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life (pp. 267–280). Dordrecht: Kluwer.
- Bininda-Emonds, O.R.P. & Sanderson, M. J. (2001). An assessment of the accuracy of MRP supertree reconstruction. Systematic Biology, 50, 565–579.
- Bininda-Emonds, O.R.P., Jones, K. E., Price, S. A., Grenyer, R., Cardillo, M., Habib, M., Purvis, A. & Gittleman, J. L. (2003). Supertrees are a necessary not-so-evil: A comment on Gatesy *et al.* Systematic Biology, 52, 724–729.
- Birks, S. M. & Edwards, S. V. (2002). A phylogeny of the megapodes (aves: Megapodiidae) based on nuclear and mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 23, 408–421.
- Bremer, K. (1988). The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution, 42, 795–803.
- Cardillo, M., Bininda-Emonds, O.R.P., Boakes, E. & Purvis, A. (2004). A species-level phylogenetic supertree of marsupials. Journal of Zoology, 264, 11–31.
- Chen, D., Diao, L., Eulenstein, O., Fernández-Baca, D. & Sanderson, M. (2003). Flipping: a supertree construction method. In M. F. Janowitz, F.-J. Lapointe, F.R. McMorris, B. Mirkin& F. S. Roberts (Eds) Bioconsensus (pp. 135–160). DIMACS Series in Discrete Mathematics and Theoretical Computer Sciences, Vol. 61. American Mathematical Society.
- Cracraft, J., Feinstein, J., Garcia-Moreno, J., Barker, F. K., Stanley, S., Sorenson, M.D. *et al.* (2004). Phylogenetic relationships among modern birds (Neornithes): Toward an avian tree of life. In J. Cracraft & M. J. Donoghue (Eds) Assembling the Tree of Life (pp. 468–489). Oxford: Oxford University Press.
- Crowe, T. M. (1978). The evolution of guinea-fowl (Galliformes, Phasianidae, Numidinae) taxonomy, phylogeny, speciation and biogeography. Annals of the South African Museum, 76, 43–136.
- Crowe, T. M., Harley, E. H., Jakutowicz, M. B., Komen, J. & Crowe, A. A. (1992). Phylogenetic, taxonomic and biogeographical implications of genetic, morphological, and behavioral variations in francolins (Phasianidae: Francolinus). Auk, 109, 24–42.
- Crowe, T. M., Bowie, R. C. K., Bloomer, P., Mandiwana, T. G., Hedderson, T. A. J., Randi, E. *et al.* (2006). Phylogenetics, biogeography and classification of, and character evolution in, gamebirds (Aves: Galliformes): Effects of character exclusion, data partitioning and missing data. Cladistics, 22, 495–532.
- Davies, T. J., Barraclough, T. G., Chase, M. W., Soltis, P. S., Soltis, D. E. & Savolainen, V. (2004). Darwin's abominable mystery: Insights from a supertree of the Angiosperms. Proceedings of the National Academy of Sciences of USA, 101, 1904–1909.
- Delacour, J. & Mayr, E. (1945). The family Anatidae. Wilson Bulletin, 57, 3–55.
- Dickinson, E. C. (2003). The Howard and Moore Complete Checklist of the Birds of the World. London: Christopher Helm.
- Dimcheff, D. E., Drovetski, S. V. & Mindell, D. P. (2002). Phylogeny of Tetraoninae and other galliform birds using mitochondrial 12S and ND2 genes. Molecular Phylogenetics and Evolution, 24, 203–215.

- Donne-Gousse, C., Laudet, V. & Hanni, C. (2002). A molecular phylogeny of Anseriformes based on mitochondrial DNA analysis. Molecular Phylogenetics and Evolution, 23, 339–356.
- Drovetski, S. V. (2002). Molecular phylogeny of grouse: Individual and combined performance of W-linked, autosomal, and mitochondrial loci. Systematic Biology, 51, 930–945.
- Dunning, J. B. (1993). CRC Handbook of Avian Body Masses. Ann Arbor: CRC Press.
- Dyke, G. J., Gulas, B. E. & Crowe, T. M. (2003). Suprageneric relationships of galliform birds (Aves, Galliformes): A cladistic analysis of morphological characters. Zoological Journal of the Linnean Society, 137, 227–244.
- Ericson, P. G. (1996). The skeletal evidence for a sister group relationship of Anseriform and galliformbirds–A critical evaluation. Journal of Avian Biology, 27, 195–202.
- Ericson, P. G. (1997). Systematic relationships of the paleogene family Presbyornithidae (Aves: Anseriformes). Zoological Journal of the Linnean Society, 121, 429-483.
- FAO (2007). FAO Statistical Yearbook. (pp. 2005–2006). Rome: FAO.
- Felsenstein, J. (1985a). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.
- Felsenstein, J. (1985b). Phylogenies and the comparative method. The American Naturalist, 125, 1–15.
- Frank-Hoeflich, K., Silveira, L. F., Estudillo-López, J., García-Koch, A. M., Ongay-Larios, L. & Piñero, D. (2007). Increased taxon and character sampling reveals novel intergeneric relationships in the Cracidae (Aves: Galliformes). Journal of Zoological Systematics and Evolutionary Research, 45, 242–254.
- Gatesy, J., Matthee, C., DeSalle, R. & Hayashi, C. (2002). Resolution of a supertree/supermatrix paradox. Systematic Biology, 51, 652–664.
- Gutierrez, R. J., Zink, R. M. & Yang, S. Y. (1983). Genic variation, systematic, and biogeographic relationships of some galliform birds. Auk, 100, 33–47.
- Gutierrez, R. J., Barrowclough, G. F. & Groth, J. G. (2000). A classification of the grouse (Aves: Tetraoninae) based on mitochondrial DNA sequences. Wildlife Biology, 6, 205–211.
- Harvey, P. H. & Pagel, M. D. (1991). The Comparative Method in Evolutionary Biology. Oxford: Oxford University Press.
- Holman, J. A. (1961). Osteology of living and fossil new world quails (Aves, Galliformes). Bulletin of Florida State of Museum Biological Sciences, 6, 131–233.
- del Hoyo, J., Elliott, A. & Sargatal, J. (1992). Handbook of the Birds of the World, Vol. 1. Barcelona: Lynx Ediciones.
- del Hoyo, J., Elliott, A. & Sargatal, J. (1994). Handbook of the Birds of the World, Vol. 2. Barcelona: Lynx Ediciones.
- IUCN. (2007 December). IUCN red list of threatened species. http://www.iucnredlist.org/
- Johnsgard, P. A. (1965). Handbook of Waterfowl Behavior. Ithaca: Cornell University Press.
- Johnsgard, P. A. (1983). The Grouse of the World. Lincoln: University of Nebraska Press.
- Jones, D. N., Dekker, R. W. R. J. & Roselaar, C. S. (1995). The Megapodes: Megapodiidae. Oxford: Oxford University Press.
- Jones, K. E., Purvis, A., MacLarnon, A., Bininda-Emonds, O. R. P.& Simmons, N. B. (2002). A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological Reviews, 77, 223–259.
- Jønsson, K. A. & Fjeldså, J. (2006). A phylogenetic supertree of oscine passerine birds (Aves: Passeri). Zoologica Scripta, 35, 149–186.

- Keane, A., Brooke, M. D. L. & Mcgowan, P. J. K. (2005). Correlates of extinction risk and hunting pressure in gamebirds (Galliformes). Biological Conservation, 126, 216–233.
- Kear, J. (2005). Ducks, Geese and Swans. Oxford: Oxford University Press.
- Kennedy, M. & Page, R. D. M. (2002). Seabird supertrees: combining partial estimates of Procellariform phylogeny. Auk, 119, 88-108.
- Kolm, N., Stein, R. W., Verspoor, J. J., Mooers, A. O. & Cunningham, E. J. (2007). Can sexual selection drive female life histories? A comparative study on galliform birds. Journal of Evolutionary Biology, 20, 627–638.
- Kriegs, J. O., Matzke, A., Churakov, G., Kuritzin, A., Mayr, G., Brosius, J. & Schmitz, J. (2007). Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes). BMC Evolutionary Biology, 7, 190.
- Levasseur, C. & Lapointe, F.-J. (2003). Increasing Phylogenetic Accuracy with Global Congruence. In M. F. Janowitz, F.-J. Lapointe, F. R. McMorris, B. Mirkin & F. S. Roberts (Eds) Bioconsensus (pp. 221–230) DIMACS Series in Discrete Mathematics and Theoretical Computer Sciences, Vol. 61. American Mathematical Society.
- Livezey, B. C. (1991). A phylogenetic analysis and classification of recent dabbling ducks (tribe Anatini) based on comparative morphology. Auk, 108, 471–507.
- Livezey, B. C. (1997). A phylogenetic classification of waterfowl (Aves: Anseriformes), including selected fossil species. Annals of Carnegie Museum, 66, 457–496.
- Maddison, D. R. & Maddison, W. P. (2000). Macclade 4: Analysis of Phylogeny and Character Evolution, Version 4.0. Sunderland: Sinauer Associates.
- Nixon, K. C. (1999). The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics, 15, 407–414.
- Olson, S. L. & Fecuccia, A. (1980). Presbyornis and the origin of Anseriformes. Smithsonian Contributions to Zoology, 323, 1–24.
- PACEC. (2007 August). The economic and environmental impact of sports hunting. <u>http://www.Shootingfacts.Co.Uk/</u>
- Piaggio-Talice, R., Burleigh, J. G. & Eulenstein, O. (2004). Quartet supertrees. In O.R.P. Bininda-Emonds (ed.) Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life (pp. 173–191) Dordrecht: Kluwer.
- Pisani, D., Yates, A. M., Langer, M. C. & Benton, M. J. (2002). A genus-level supertree of the Dinosauria. Proceedings of the Royal Society B, 269, 915–921.
- Prager, E. M. & Wilson, A. C. (1976). Congruency of phylogenies derived from different proteins: a molecular analysis of the phylogenetic position of cracid birds. Journal of Molecular Evolution, 9,45–57.
- Price, S. A., Bininda-Emonds, O.R.P. & Gittleman, J. L. (2005). A complete phylogeny of the whales, dolphins and eventoed hoofed mammals(Cetartiodactyla). Biological Reviews, 80, 445–473.
- Purvis, A. (1995). A composite estimate of primate phylogeny. Philosophical Transactions of the Royal SocietyB, 348, 405–421.

- Ragan, M. A. (1992). Phylogenetic inference based on matrix representation of trees. Molecular Phylogenetics and Evolution, 1, 53–58.
- Salamin, N., Hodkinson, T. R. & Savolainen, V. (2002). Building supertrees: an empirical assessment using the grass family (Poaceae). Systematic Biology, 51, 136–150.
- Sanderson, M. J., Donoghue, M. J., Piel, W. & Eriksson, T. (1994). TreeBASE: a prototype database of phylogenetic analyses and an interactive tool for browsing the phylogeny of life. American Journal of Botany, 81, 183.
- Sanderson, M. J., Purvis, A. & Henze, C. (1998). Phylogenetic supertrees: Assembling the trees of life. Trends in Ecology and Evolution, 13, 105–109.
- Sanderson, M. J., Driskell, A. C., Ree, R. H., Eulenstein, O. & Langley, S. (2003). Obtaining maximal concatenated phylogenetic data sets from large sequence databases. Molecular Biology and Evolution, 20, 1036–1042.
- Sibley, C. G. & Ahlquist, J. E. (1990). Phylogeny and Classification of Birds: a Study in Molecular Evolution. New Haven: Yale University Press.
- Sorenson, M. D., Oneal, E., Garcia-Moreno, J. & Mindell, D. P. (2003). More taxa, more characters: the hoatzin problem is still unresolved. Molecular Biology and Evolution, 20, 1484–1499.
- Springer, M. S. & de Jong, W. W. (2001). Phylogenetics: which mammalian supertree to bark up? Science, 291, 1709–1711.
- Swofford, D. L. (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sunderland, Massachusetts: Sinauer Associates.
- Thomas, G. H., Wills, M. A. & Szekely, T. (2004). A supertree approach to shorebird phylogeny. BMCEvolutionary Biology, 4, 28.
- USDA. (2007 August). Poultry yearbook. <u>http://usda.</u> <u>Mannlib.Cornell.edu/mannusda/viewdocumentinfo.</u> <u>Do?Documentid=1367</u>
- USFWS. (2007 August). Economic Analysis of the Migratory Bird Hunting Regulations for the 2007–08 Season. <u>http://</u> www.Fws.Gov/migratorybirds/reports/specialtopics/economicanalysis-2007update.pdf
- Wetmore, A. (1960). A classification for the birds of the world. Smithsonian Miscellaneous Collection, 139, 1–37.
- Wilkinson, M., Cotton, J. A., Creevey, C., Eulenstein, O., Harris, S. R., Lapointe, F.-J., Levasseur, C., McInerney, J. O., Pisani, D. & Thorley, J. L. (2005). The shape of supertrees to come: Tree shape related properties of fourteen supertree methods. Systematic Biology, 54, 419–431.
- Wilkinson, M., Cotton, J. A., Lapointe, F.-J. & Pisani, D. (2007). Properties of supertree methods in the consensus setting. Systematic Biology, 56, 330–337.
- Woolfenden, G. (1961). Post-cranial osteology of the waterfowl. Bulletin of the Florida State Museum Biological Sciences, 6, 1–129.

Source trees used to construct the galloanserae supertree subdivided according to the independent data set they contributed to. The relative weights for the pseudocharacters associated with each source tree are also provided. Number of permutations refers to the number of trees that resulted from the synonymization process because of having to accommodate non-monophyletic taxa.

-				Number of	Relative
Data set	Tree ID	Reference	Tree source	permuations	weight
Mix 01	A 09 09	McCracken et al. (1999)	Fig 5a		0.500
Mix 01	A 09 10	McCracken et al. (1999)	Fig 5b		0.500
Mix 02	G 63 08	Bloomer & Crowe (1998)	Fig 7		1.000
Mix 03	G 89 09	Crowe et al. (2006)	Fig 4		0.500
Mix 04	G 64 06	Crowe et al. (1992)	Fig 3c		1.000
Mix 06	G 75 02	Randi et al. (1991)	Fig 1b		1.000
Mol 01	G 04 03	Kimball et al. (1999)	Fig 4		0.250
Mol 01	G 14 05	Kornegay et al. (1993)	Fig 5b		0.250
Mol 01	G 14 07	Kornegay et al. (1993)	Fig 6b		0.250
Mol 01	G 37 02	Avise et al. (1994)	Fig 1 (right)		0.250
Mol 02	G 05 03	Nishibori et al. (2004)	Fig 1c		0.500
Mol 02	G 051 03	Nishibori et al. (2002)	Fig 1c		0.500
Mol 03	G 48 02	Nishibori et al. (2005)	Fig 1b	2	0.500
Mol 04	A 16 01	Zimmer et al. (1994)	Fig 3a		0.143
Mol 04	A 16 02	Zimmer et al. (1994)	Fig 3b		0.143
Mol 04	A 16 03	Zimmer et al. (1994)	Fig 3c		0.143
Mol 04	G 31 09	Garcia-Moreno et al. (2003)	Fig al (128 ML		0.143
			analysis)		
Mol 04	G 31 10	Garcia-Moreno et al. (2003)	Fig al 12S		0.143

Data act	Traa ID	Dafaranaa	Trae course	Number of	Relative
Data set	Thee ID	Keterence	The source	permuations	weight
			POY (equal		
			weights)		
Mol 04	G 31 11	Garcia-Moreno et al. (2003)	Fig al 12S (tv		0.143
			and gaps 2x		
			over ts)		
Mol 04	G 89 13	Crowe et al. (2006)	Fig 8	2	0.071
Mol 05	G 17 01	Sorenson et al. (2003)	Fig 1		0.500
Mol 05	G 17 02	Sorenson et al. (2003)	Fig 2		0.500
Mol 06	G 31 01	Garcia-Moreno et al. (2003)	Fig 2b		0.333
Mol 06	G 31 13	Garcia-Moreno et al. (2003)	Fig a2 (coding		0.333
			mtDNA)		
Mol 06	G 31 18	Garcia-Moreno et al. (2003)	Fig a2 (all		0.333
			mtDNA)		
Mol 07	G 02 01	Dimcheff et al. (2002)	Fig 2		0.333
Mol 07	G 02 02	Dimcheff et al. (2002)	Fig 3		0.333
Mol 07	G 39 01	Dimcheff et al. (2000)	Fig 6		0.333
Mol 08	G 02 03	Dimcheff et al. (2002)	Fig 4		0.500
Mol 08	G 45 01	Pereira & Baker (2006)	Fig 1		0.500
Mol 09	A 09 04	McCracken et al. (1999)	Fig 2a		0.018
Mol 09	A 09 05	McCracken et al. (1999)	Fig 2b		0.018
Mol 09	A 09 06	McCracken et al. (1999)	Fig 2c		0.018
Mol 09	A 09 07	McCracken et al. (1999)	Fig 3		0.018
Mol 09	A 14 01	Sraml et al. (1996)	Fig 1		0.018
Mol 09	A 14 02	Sraml et al. (1996)	Fig 2		0.018
Mol 09	A 14 03	Sraml et al. (1996)	Fig 3		0.018
Mol 09	G 01 02	Armstrong et al. (2001)	Fig right		0.018

		Reference		Number of	Relative
Data set	Tree ID		Tree source	permuations	weight
Mol 09	G 04 01	Kimball et al. (1999)	Fig 2		0.018
Mol 09	G 04 02	Kimball et al. (1999)	Fig 3		0.018
Mol 09	G 09 01	Kimball et al. (1997)	Fig 1a		0.018
Mol 09	G 09 03	Kimball et al. (1997)	Fig 2a		0.018
Mol 09	G 10 01	Randi (1996)	Fig 5a		0.018
Mol 09	G 10 02	Randi (1996)	Fig 5b		0.018
Mol 09	G 10 03	Randi (1996)	Fig 6a		0.018
Mol 09	G 10 04	Randi (1996)	Fig 6b		0.018
Mol 09	G 14 04	Kornegay et al. (1993)	Fig 5a		0.018
Mol 09	G 14 06	Kornegay et al. (1993)	Fig 6a		0.018
Mol 09	G 31 07	Garcia-Moreno et al. (2003)	Fig a1		0.018
			(cytochrome b)		
Mol 09	G 31 16	Garcia-Moreno et al. (2003)	Fig a2		0.018
			(cytochrome b)		
Mol 09	G 33 03	Zhan & Zhang (2005)	Fig 2c		0.018
Mol 09	G 33 04	Zhan & Zhang (2005)	Fig 4a		0.018
Mol 09	G 35 01	Shibusawa et al. (2004a)	Fig 4		0.018
Mol 09	G 37 01	Avise et al. (1994)	Fig 1 (left)		0.018
Mol 09	G 37 03	Avise et al. (1994)	Fig 2 (left)		0.018
Mol 09	G 37 04	Avise et al. (1994)	Fig 2 (right)		0.018
Mol 09	G 63 02	Bloomer & Crowe (1998)	Fig 3		0.018
Mol 09	G 63 03	Bloomer & Crowe (1998)	Fig 4a		0.018
Mol 09	G 63 04	Bloomer & Crowe (1998)	Fig 4b		0.018
Mol 09	G 63 05	Bloomer & Crowe (1998)	Fig 4c		0.018
Mol 09	G 63 06	Bloomer & Crowe (1998)	Fig 5		0.018
Mol 09	G 65 01	Bush & Strobeck (2003)	Fig 1		0.018

				Number of	Relative
Data set	Tree ID	Reference	Tree source	permuations	weight
Mol 09	G 65 02	Bush & Strobeck (2003)	Fig 2		0.018
Mol 09	G 65 03	Bush & Strobeck (2003)	Fig 3		0.018
Mol 09	G 69 04	Kimball et al. (2001)	Fig 2b3		0.018
Mol 09	G 69 07	Kimball et al. (2001)	Fig 3		0.018
Mol 09	G 71 01	Luzhang <i>et al.</i> (2005)	Fig 3		0.018
Mol 09	G 78 01	Ellsworth et al. (1996)	Fig 1		0.018
Mol 09	G 78 02	Ellsworth et al. (1996)	Fig 2a		0.018
Mol 09	G 78 03	Ellsworth et al. (1996)	Fig 2b		0.018
Mol 09	G 78 04	Ellsworth et al. (1996)	Fig 2c		0.018
Mol 09	G 78 05	Ellsworth et al. (1996)	Fig 3		0.018
Mol 09	G 81 01	Gutierrez et al. (2000)	Fig 1a		0.018
Mol 09	G 81 02	Gutierrez et al. (2000)	Fig 1b		0.018
Mol 09	G 81 03	Gutierrez et al. (2000)	Fig 1c		0.018
Mol 09	G 81 04	Gutierrez et al. (2000)	Fig 1d		0.018
Mol 09	G 84 03	Zhan et al. (2003)	Fig 2a		0.018
Mol 09	G 84 04	Zhan et al. (2003)	Fig 2b		0.018
Mol 09	G 85 01	Tsam et al. (2003)	Fig 3a		0.018
Mol 09	G 85 02	Tsam et al. (2003)	Fig 3b		0.018
Mol 09	G 85 03	Tsam et al. (2003)	Fig 3c		0.018
Mol 09	G 88 01	Wen et al. (2005)	Fig 2a		0.018
Mol 09	G 88 02	Wen <i>et al.</i> (2005)	Fig 2b		0.018
Mol 09	G 88 03	Wen <i>et al.</i> (2005)	Fig 2c		0.018
Mol 09	G 89 10	Crowe et al. (2006)	Fig 5	3	0.006
Mol 09	G 90 01	Butorina et al. (2000)	Fig 4		0.018
Mol 10	G 70 02	Lucchini et al. (2001)	Fig 3		1.000
Mol 11	A 06 02	Kennedy & Spencer (2000)	Fig 3		1.000

				Number of	Relative
Data set	Tree ID	Reference	Tree source	permuations	weight
Mol 12	A 06 03	Kennedy & Spencer (2000)	Fig 5		1.000
Mol 13	A 10 02	McCracken & Sorenson (2005)	Fig 4a		0.500
Mol 13	A 10 03	McCracken & Sorenson (2005)	Fig 4b		0.500
Mol 14	G 81 05	Gutierrez et al. (2000)	Fig 1e		0.500
Mol 14	G 81 06	Gutierrez et al. (2000)	Fig 1f		0.500
Mol 15	A 11 01	Paxinos et al. (2002)	Fig 4	2	0.042
Mol 15	G 33 06	Zhan & Zhang (2005)	Fig 4c		0.083
Mol 15	G 62 01	Randi et al. (2001)	Fig 4a		0.083
Mol 15	G 62 02	Randi et al. (2001)	Fig 4b		0.083
Mol 15	G 62 03	Randi et al. (2001)	Fig 4c		0.083
Mol 15	G 69 03	Kimball et al. (2001)	Fig 2b2		0.083
Mol 15	G 72 01	Moulin <i>et al.</i> (2003)	Fig 2		0.083
Mol 15	G 74 05	Randi et al. (2000)	Fig 6d		0.083
Mol 15	G 74 08	Randi et al. (2000)	Fig 6g		0.083
Mol 15	G 74 09	Randi et al. (2000)	Fig 6h		0.083
Mol 15	G 86 01	Wu et al. (2005)	Fig 1		0.083
Mol 15	G 86 02	Wu et al. (2005)	Fig 2		0.083
Mol 16	A 01 13	Donne-Gousse et al. (2002)	Fig 7c		0.500
Mol 16	G 53 02	Grau <i>et al.</i> (2005)	Fig 2		0.500
Mol 17	G 31 03	Garcia-Moreno et al. (2003)	Fig 2d		1.000
Mol 18	A 01 12	Donne-Gousse et al. (2002)	Fig 7b		0.091
Mol 18	A 03 01	Johnson & Sorenson (1998)	Fig 1	4	0.023
Mol 18	A 03 02	Johnson & Sorenson (1998)	Fig 2	4	0.023
Mol 18	A 05 01	Johnson & Sorenson (1999)	Fig 1	2	0.045
Mol 18	G 05 01	Nishibori et al. (2004)	Fig 1a		0.091
Mol 18	G 05 02	Nishibori et al. (2004)	Fig 1b		0.091

Data ast	Trac ID	Reference	Trop courses	Number of	Relative
Data set	Thee ID		ree source	permuations	weight
Mol 18	G 051 01	Nishibori et al. (2002)	Fig 1a		0.091
Mol 18	G 051 02	Nishibori et al. (2002)	Fig 1b		0.091
Mol 18	G 57 01	Zink & Balckwell (1998)	Fig 3a		0.091
Mol 18	G 57 02	Zink & Balckwell (1998)	Fig 3b		0.091
Mol 18	G 80 01	Wada et al. (2004)	Fig 1		0.091
Mol 19	G 54 01	Pereira & Baker (2004)	Fig 2		0.500
Mol 19	G 54 02	Pereira & Baker (2004)	Fig 3		0.500
Mol 20	G 54 03	Pereira & Baker (2004)	Fig 5a		0.500
Mol 20	G 54 04	Pereira & Baker (2004)	Fig 5b		0.500
Mol 21	A 01 04	Donne-Gousse et al. (2002)	Fig 4a		0.032
Mol 21	A 01 05	Donne-Gousse et al. (2002)	Fig 4b		0.032
Mol 21	A 01 06	Donne-Gousse et al. (2002)	Fig 4c		0.032
Mol 21	A 01 07	Donne-Gousse et al. (2002)	Fig 4d		0.032
Mol 21	A 01 08	Donne-Gousse et al. (2002)	Fig 5a		0.032
Mol 21	A 01 09	Donne-Gousse et al. (2002)	Fig 5b		0.032
Mol 21	A 01 11	Donne-Gousse et al. (2002)	Fig 7a		0.032
Mol 21	A 10 01	McCracken & Sorenson (2005)	Fig 2		0.032
Mol 21	A 12 05	Peters et al. (2005)	Fig 5		0.032
Mol 21	A 12 06	Peters et al. (2005)	Fig 6		0.032
Mol 21	A 13 01	Ruokonen et al. (2000)	Fig 2a		0.032
Mol 21	A 13 02	Ruokonen et al. (2000)	Fig 2b	2	0.016
Mol 21	A 15 01	Young & Rhymer (1998)	Fig 2		0.032
Mol 21	G 04 04	Kimball et al. (1999)	Fig 5		0.032
Mol 21	G 09 02	Kimball et al. (1997)	Fig 1b		0.032
Mol 21	G 09 04	Kimball et al. (1997)	Fig 2b		0.032
Mol 21	G 33 05	Zhan & Zhang (2005)	Fig 4b		0.032

Data set Ti	Tree ID	Reference	Tree source	Number of	Relative
Data Set			The source	permuations	weight
Mol 21	G 46 01	Akishinonomiya et al. (1995)	Fig 1		0.032
Mol 21	G 46 02	Akishinonomiya et al. (1995)	Fig 2		0.032
Mol 21	G 59 04	Drovetski (2002)	Fig 4	4	0.008
Mol 21	G 66 01	Akishinonomiya et al. (1996)	Fig 2		0.032
Mol 21	G 67 01	Hennache et al. (2003)	Fig 2	3	0.011
Mol 21	G 69 05	Kimball et al. (2001)	Fig 2b4		0.032
Mol 21	G 70 01	Lucchini et al. (2001)	Fig 2		0.032
Mol 21	G 73 01	Randi & Lucchini (1998)	Fig 7		0.032
Mol 21	G 74 01	Randi et al. (2000)	Fig 5		0.032
Mol 21	G 74 02	Randi et al. (2000)	Fig 6a		0.032
Mol 21	G 74 03	Randi et al. (2000)	Fig 6b		0.032
Mol 21	G 74 04	Randi et al. (2000)	Fig 6c		0.032
Mol 21	G 89 08	Crowe et al. (2006)	Fig 3f	2	0.016
Mol 21	G 89 12	Crowe et al. (2006)	Fig 7	3	0.011
Mol 22	G 31 05	Garcia-Moreno et al. (2003)	Fig a1 (ND1)		0.500
Mol 22	G 31 14	Garcia-Moreno et al. (2003)	Fig a2 (ND1)		0.500
Mol 23	G 48 01	Nishibori et al. (2005)	Fig 1a	2	0.250
Mol 23	G 48 03	Nishibori et al. (2005)	Fig 1c	2	0.250
Mol 24	G 31 06	Garcia-Moreno et al. (2003)	Fig al (ND2)		0.200
Mol 24	G 31 15	Garcia-Moreno et al. (2003)	Fig a2 (ND2)		0.200
Mol 24	G 55 02	Birks & Edwards (2002)	Fig 5 (right)	2	0.100
Mol 24	G 55 04	Birks & Edwards (2002)	Fig 6 (right)	2	0.100
Mol 24	G 89 11	Crowe et al. (2006)	Fig 6	2	0.100
Mol 25	A 07 01	Kessler & Avise (1984)	Fig 2 (upper)		0.333
Mol 25	A 07 02	Kessler & Avise (1984)	Fig 2 (lower)		0.333
Mol 25	A 07 03	Kessler & Avise (1984)	Fig 3	3	0.333

				Number of	Relative
Data set	Tree ID	Reference	Tree source	permuations	weight
Mol 26	A 18 01	Tuohy et al. (1992)	Fig 7		1.000
Mol 27	G 49 01	Munechika et al. (1997)	Fig 1		1.000
Mol 28	G 61 01	Ellsworth et al. (1995)	Fig 1		0.500
Mol 28	G 61 02	Ellsworth et al. (1995)	Fig 2		0.500
Mol 29	G 64 05	Crowe et al. (1992)	Fig 3b		0.500
Mol 29	G 64 07	Crowe et al. (1992)	Fig 4		0.500
Mol 31	G 37 05	Avise et al. (1994)	Fig 4		1.000
Mol 32	G 52 03	Pereira et al. (2002)	Fig 4		0.500
Mol 32	G 52 04	Pereira et al. (2002)	Fig 5		0.500
Mol 33	G 31 04	Garcia-Moreno et al. (2003)	Fig a1 (all		0.500
			characters)		
Mol 33	G 31 19	Garcia-Moreno et al. (2003)	Fig a2 (all		0.500
			protein genes)		
Mol 34	G 69 02	Kimball et al. (2001)	Fig 2b1		1.000
Mol 35	A 10 04	McCracken & Sorenson (2005)	Fig 5 (upper)		0.500
Mol 35	A 10 05	McCracken & Sorenson (2005)	Fig 5 (lower)		0.500
Mol 36	G 28 04	Cracraft et al. (2004)	Fig 275		1.000
Mol 37	G 55 05	Birks & Edwards (2002)	Fig 7	2	0.500
Mol 38	G 59 05	Drovetski (2002)	Fig 5		1.000
Mol 39	G 26 01	van Tuinen & Hedges (2001)	Fig 3		1.000
Mol 42	A 17 01	Madsen et al. (1988)	Fig 2		0.250
Mol 42	G 19 03	Sibley & Ahlquist (1990)	Fig 328		0.250
Mol 42	G 19 05	Sibley & Ahlquist (1990)	Fig 354		0.250
Mol 42	G 19 06	Sibley & Ahlquist (1990)	Fig 357		0.250
Mol 43	G 18 02	Eguchi et al. (2000)	Fig 6b		0.500
Mol 43	G 50 01	Eguchi et al. (1995)	Fig 4a		0.500

Data set — Tree ID		Dafaranaa	Tree course	Number of	Relative
Data Set	IIEE ID	Reference	Thee source	permuations	weight
Mol 44	G 18 01	Eguchi et al. (2000)	Fig 6a		0.500
Mol 44	G 50 02	Eguchi et al. (1995)	Fig 4b		0.500
Mol 45	G 18 03	Eguchi et al. (2000)	Fig 6c		0.500
Mol 45	G 50 03	Eguchi et al. (1995)	Fig 4c		0.500
Mol 47	G 13 01	Jolles et al. (1979)	Fig 3		0.500
Mol 47	G 14 08	Kornegay et al. (1993)	Fig 8		0.500
Mol 48	G 12 01	Henderson et al. (1981)	Fig 7		1.000
Mol 49	G 08 01	Gutierrez et al. (1983)	Fig 1		0.250
Mol 49	G 08 02	Gutierrez et al. (1983)	Fig 2		0.250
Mol 49	G 08 03	Gutierrez et al. (1983)	Fig 3 left		0.250
Mol 49	G 08 04	Gutierrez et al. (1983)	Fig 3 right		0.250
Mol 50	G 59 03	Drovetski (2002)	Fig 3	2	0.500
Mol 51	G 07 01	Smith <i>et al.</i> (2005)	Fig 1	4	0.125
Mol 51	G 07 02	Smith <i>et al.</i> (2005)	Fig 2	2	0.250
Mol 52	G 38 01	Hedges et al. (1995)	Fig 2a		1.000
Mol 53	G 59 02	Drovetski (2002)	Fig 2		1.000
Mol 54	A 12 03	Peters et al. (2005)	Fig 4a	2	0.125
Mol 54	A 12 04	Peters et al. (2005)	Fig 4b	2	0.125
Mol 55	A 04 01	John <i>et al.</i> (2005)	Fig 4		1.000
Mol 56	G 48 05	Nishibori et al. (2005)	Fig 3		1.000
Mol 57	G 31 02	Garcia-Moreno et al. (2003)	Fig 2c		0.200
Mol 57	G 31 08	Garcia-Moreno et al. (2003)	Fig al (Cmos)		0.200
Mol 57	G 31 12	Garcia-Moreno et al. (2003)	Fig a2 (Cmos)		0.200
Mol 57	G 31 17	Garcia-Moreno et al. (2003)	Fig a2 (all		0.200
			characters)		
Mol 57	G 58 01	Butorina & Solovenchuk (2004)	Fig 2		0.200

Data set	Tree ID	Reference	Tree source	Number of	Relative
Data Set			The source	permuations	weight
Mol 59	G 28 07	Cracraft et al. (2004)	Fig 278		1.000
Mol 60	G 24 01	Fain & Houde (2004)	Fig 2		1.000
Mol 61	G 79 01	Backstrom et al. (2005)	Fig 1		1.000
Mol 62	G 17 03	Sorenson et al. (2003)	Fig 3		1.000
Mol 63	G 48 04	Nishibori et al. (2005)	Fig 2	2	0.500
Mol 64	G 01 01	Armstrong et al. (2001)	Fig left		0.333
Mol 64	G 69 06	Kimball et al. (2001)	Fig 2b5		0.333
Mol 64	G 89 14	Crowe et al. (2006)	Fig 9	2	0.167
Mol 65	G 41 01	Pimentel-Smith et al. (2001)	Fig 1		1.000
Mol 66	G 28 05	Cracraft et al. (2004)	Fig 277a		1.000
Mol 67	G 55 01	Birks & Edwards (2002)	Fig 5 (left)		0.500
Mol 67	G 55 03	Birks & Edwards (2002)	Fig 6 (left)		0.500
Mol 68	G 59 01	Drovetski (2002)	Fig 1		1.000
Mol 69	G 15 05	Prager & Wilson (1976)	Fig 3a		0.500
Mol 69	G 15 06	Prager & Wilson (1976)	Fig 3b		0.500
Mol 71	G 11 01	Kathleen et al. (1986)	Fig 3I		1.000
Mol 72	G 36 01	Helm-Bychowski & Wilson (1986)	Fig 3I		1.000
Mol 73	G 15 07	Prager & Wilson (1976)	Fig 4a		0.500
Mol 73	G 15 08	Prager & Wilson (1976)	Fig 4b		0.500
Mol 74	G 15 03	Prager & Wilson (1976)	Fig 2a		0.500
Mol 74	G 15 04	Prager & Wilson (1976)	Fig 2b		0.500
Mol 75	G 15 11	Prager & Wilson (1976)	Fig 7		1.000
Mol 76	G 75 05	Randi et al. (1991)	Fig 2a		0.250
Mol 76	G 75 06	Randi et al. (1991)	Fig 2b		0.250
Mol 76	G 75 07	Randi et al. (1991)	Fig 2c		0.250
Mol 76	G 75 08	Randi et al. (1991)	Fig 2d		0.250

	T			Number of	Relative
Data set	Tree ID	Reference	Tree source	permuations	weight
Mol 77	G 76 01	Randi et al. (1992)	Fig 2a		0.500
Mol 77	G 76 02	Randi <i>et al.</i> (1992)	Fig 2b		0.500
Mol 79	A 19 02	Patton & Avise (1986)	Fig 2		0.333
Mol 79	A 19 03	Patton & Avise (1986)	Fig 3		0.333
Mol 79	A 19 04	Patton & Avise (1986)	Fig 4		0.333
Mol 80	A 30 09	Livezey (1997)	Fig 7c		1.000
Mol 81	G 28 02	Cracraft et al. (2004)	Fig 273		1.000
Mol 82	A 01 10	Donne-Gousse et al. (2002)	Fig 6		1.000
Mol 83	G 70 03	Lucchini et al. (2001)	Fig 4		1.000
Morph	A 02 01	Ericson (1997)	Fig 33		0.017
Morph	A 02 02	Ericson (1997)	Fig 34		0.017
Morph	A 02 03	Ericson (1997)	Fig 35		0.017
Morph	A 02 04	Ericson (1997)	Fig 36		0.017
Morph	A 09 01	McCracken et al. (1999)	Fig 1a		0.017
Morph	A 09 02	McCracken et al. (1999)	Fig 1ba		0.017
Morph	A 09 03	McCracken et al. (1999)	Fig 1b2		0.017
Morph	A 09 08	McCracken et al. (1999)	Fig 4		0.017
Morph	A 09 11	McCracken et al. (1999)	Fig 6a		0.017
Morph	A 20 01	Livezey (1986a)	Fig 1		0.017
Morph	A 21 02	Livezey (1986b)	Fig 2		0.017
Morph	A 22 01	Livezey (1989)	Fig 1		0.017
Morph	A 23 01	Livezey (1991)	Fig 1	2	0.008
Morph	A 24 01	Livezey (1995a)	Fig 1a		0.017
Morph	A 24 02	Livezey (1995a)	Fig 1b		0.017
Morph	A 24 03	Livezey (1995a)	Fig 1c		0.017
Morph	A 24 04	Livezey (1995a)	Fig 2		0.017

Data set	Tree ID	Reference	Tree source	Number of	Relative
Data Set		Reference	The source	permuations	weight
Morph	A 24 05	Livezey (1995a)	Fig 3		0.017
Morph	A 25 01	Livezey (1995b)	Fig 1		0.017
Morph	A 25 02	Livezey (1995b)	Fig 2		0.017
Morph	A 26 01	Livezey (1995c)	Fig 1		0.017
Morph	A 26 02	Livezey (1995c)	Fig 2		0.017
Morph	A 27 01	Livezey (1996a)	Fig 1		0.017
Morph	A 27 02	Livezey (1996a)	Fig 2		0.017
Morph	A 27 04	Livezey (1996c)	Fig 4		0.017
Morph	A 28 01	Livezey (1996c)	Fig 1		0.017
Morph	A 28 02	Livezey (1996c)	Fig 2		0.017
Morph	A 28 03	Livezey (1996c)	Fig 3		0.017
Morph	A 28 04	Livezey (1996c)	Fig 4		0.017
Morph	A 28 05	Livezey (1996c)	Fig 5		0.017
Morph	A 28 06	Livezey (1996c)	Fig 6		0.017
Morph	A 28 07	Livezey (1996c)	Fig 7		0.017
Morph	A 28 08	Livezey (1996c)	Fig 8		0.017
Morph	A 28 09	Livezey (1996c)	Fig 9		0.017
Morph	A 28 10	Livezey (1996c)	Fig 10		0.017
Morph	A 28 11	Livezey (1996)	Fig 11		0.017
Morph	A 29 01	Livezey (1996b)	Fig 1		0.017
Morph	A 29 02	Livezey (1996b)	Fig 2		0.017
Morph	A 29 03	Livezey (1996b)	Fig 3		0.017
Morph	A 30 01	Livezey (1997a)	Fig 1		0.017
Morph	A 30 02	Livezey (1997a)	Fig 2		0.017
Morph	A 30 03	Livezey (1997a)	Fig 3		0.017
Morph	A 30 04	Livezey (1997a)	Fig 4		0.017

Data set	Tree ID	Deference	Tree source	Number of	Relative
Data set	THE ID	Kelefence	Thee source	permuations	weight
Morph	A 30 05	Livezey (1997a)	Fig 5		0.017
Morph	A 30 06	Livezey (1997b)	Fig 6		0.017
Morph	A 32 01	Livezey (1997b)	Fig 1		0.017
Morph	A 32 02	Livezey (1997b)	Fig 2		0.017
Morph	A 33 01	Livezey & Martin (1988)	Fig 10a		0.017
Morph	A 33 02	Livezey & Martin (1988)	Fig 10b		0.017
Morph	A 33 03	Livezey & Martin (1988)	Fig 10c		0.017
Morph	A 33 04	Livezey & Martin (1988)	Fig 10d		0.017
Morph	A 33 05	Livezey & Martin (1988)	Fig 10e		0.017
Morph	A 33 06	Livezey & Martin (1988)	Fig 10f		0.017
Morph	A 34 01	Bourdon (2005)	Fig 2		0.017
Morph	G 32 01	Livezey & Zusi (2001)	Fig 2b		0.017
Morph	G 32 04	Livezey & Zusi (2001)	Fig 3		0.017
Morph	G 34 01	Dyke (2003)	Fig 2		0.017
Morph	G 44 02	Gulas-Wroblewski & Wroblewski	Fig 4		0.017
		(2003)			
Morph	G 56 02	Jones et al. (1995)	Fig 22		0.017
Morph	G 63 07	Bloomer & Crowe (1998)	Fig 6		0.017
Other 01	A 09 12	McCracken et al. (1999)	Fig 9a		0.250
Other 01	A 09 13	McCracken et al. (1999)	Fig 9b		0.250
Other 01	A 09 14	McCracken et al. (1999)	Fig 9c		0.250
Other 01	A 09 15	McCracken et al. (1999)	Fig 9d		0.250
Other 02	G 64 02	Crowe et al. (1992)	Fig 1b		0.333
Other 02	G 64 03	Crowe et al. (1992)	Fig 1c		0.333
Other 02	G 64 04	Crowe <i>et al.</i> (1992)	Fig 3a		0.333
Other 03	G 91 02	Crowe (1978)	Fig 47		0.500

Data set Tree ID Reference Tree source permuations weight Other 03 G 91 03 Crowe (1978) Fig 53 0.500 Other 04 G 23 01 Johnsgard (1999) Fig 1 0.500 Other 04 G 23 02 Johnsgard (1999) Fig 2 0.500 Other 05 G 03 01 Dike et al. (2003) Fig 2 2 0.250 Other 05 G 03 02 Dike et al. (2003) Fig 3 2 0.250 Other 06 G 74 06 Randi et al. (2003) Fig 6 1.000 Other 07 G 72 02 Moulin et al. (2003) Fig 3 1.000 Other 08 G 06 01 Shibusawa et al. (2004b) Fig 6 1.000 Other 10 G 16 01 Stock & Bunch (1982) Fig 1 1.000 Other 11 G 20 01 Johnsgard (1973) Fig 1 (down) 1.000 Other 13 G 22 02 Johnsgard (1973) Fig 1a 1.000 Unsp 01 A 01 01 Donne-Gousse et al. (2002) Fig 3a 1.000	_			Number of	Relative	
Other 03 G 91 03 Crowe (1978) Fig 53 0.500 Other 04 G 23 01 Johnsgard (1999) Fig 1 0.500 Other 04 G 23 02 Johnsgard (1999) Fig 2 0.500 Other 05 G 03 01 Dike et al. (2003) Fig 2 2 0.250 Other 05 G 03 02 Dike et al. (2003) Fig 3 2 0.250 Other 05 G 03 02 Dike et al. (2003) Fig 6 1.000 Other 06 G 74 06 Randi et al. (2003) Fig 6 1.000 Other 07 G 72 02 Moulin et al. (2004b) Fig 6 1.000 Other 08 G 06 01 Shibusawa et al. (2004b) Fig 1 1.000 Other 10 G 16 01 Stock & Bunch (1982) Fig 1 1.000 Other 11 G 20 01 Johnsgard (1973) Fig 1 (down) 1.000 Other 13 G 22 02 Johnsgard (1973) Fig 7b 1.000 Unsp 01 A 01 01 Donne-Gousse et al. (2002) Fig 7b 1.000	Data set	Tree ID	Reference	Tree source	permuations	weight
Other 04 $G 23 01$ Johnsgard (1999) Fig 1 0.500 Other 04 $G 23 02$ Johnsgard (1999) Fig 2 2 0.500 Other 05 $G 03 01$ Dike et al. (2003) Fig 2 2 0.250 Other 05 $G 03 02$ Dike et al. (2003) Fig 3 2 0.250 Other 06 $G 74 06$ Randi et al. (2000) Fig 6e 1.000 Other 07 $G 72 02$ Moulin et al. (2004b) Fig 6 1.000 Other 08 G 06 01 Shibusawa et al. (2004b) Fig 1 1.000 Other 09 G 16 01 Stock & Bunch (1982) Fig 1 1.000 Other 11 G 20 01 Johnsgard (1973) Fig 1 1.000 Other 12 G 21 02 Johnsgard (1983) Fig 3 1.000 Unsp 01 A 01 01 Donne-Gousse et al. (2002) Fig 1a 1.000 Unsp 02 A 30 08 Livezey (1997) Fig 2710 1.000 Unsp 03 G 09 05 Kimball et al. (1997) Fig 2b 1.000 Unsp 04 G 33 02 Zhan & Zhang (2005) Fig 2b <td>Other 03</td> <td>G 91 03</td> <td>Crowe (1978)</td> <td>Fig 53</td> <td></td> <td>0.500</td>	Other 03	G 91 03	Crowe (1978)	Fig 53		0.500
Other 04G 23 02Johnsgard (1999)Fig 220.500Other 05G 03 01Dike et al. (2003)Fig 220.250Other 05G 03 02Dike et al. (2003)Fig 320.250Other 06G 74 06Randi et al. (2000)Fig 61.000Other 07G 72 02Moulin et al. (2003)Fig 61.000Other 08G 06 01Shibusawa et al. (2004b)Fig 61.000Other 09G 16 01Stock & Bunch (1982)Fig 101.000Other 10G 20 01Johnsgard (1973)Fig 1 (down)1.000Other 13G 22 02Johnsgard (1973)Fig 1 (down)1.000Other 13G 22 02Johnsgard (1988)Fig 31.000Unsp 01A 01 01Donne-Gousse et al. (2002)Fig 1a1.000Unsp 02A 30 08Livezey (1997)Fig 7b1.000Unsp 03G 09 05Kimball et al. (1997)Fig 27101.000Unsp 04G 53 01Preira et al. (2002)Fig 2a1.000Unsp 09G 52 01Preira et al. (2002)Fig 2a1.000Unsp 10G 52 02Preira et al. (2002)Fig 2a1.000Unsp 11G 53 01Jones et al. (2005)Fig 11.000Unsp 12G 56 01Jones et al. (1995)Fig 11.000Unsp 13G 63 01Bloomer & Crowe (1998)Fig 11.000TaxTaxDickinson (2003)Fig 10.001	Other 04	G 23 01	Johnsgard (1999)	Fig 1		0.500
Other 05G 0 3 01Dike et al. (2003)Fig 220.250Other 05G 0 3 02Dike et al. (2003)Fig 320.250Other 06G 74 06Randi et al. (2000)Fig 6e1.000Other 07G 72 02Moulin et al. (2003)Fig 31.000Other 08G 06 01Shibusawa et al. (2004b)Fig 61.000Other 09G 16 01Stock & Bunch (1982)Fig 101.000Other 10G 20 01Johnsgard (1983)Fig 11.000Other 12G 21 02Johnsgard (1973)Fig 1 (down)1.000Other 13G 22 02Johnsgard (1988)Fig 31.000Other 14G 01 01Donne-Gousse et al. (2002)Fig 7b1.000Unsp 01A 01 01Donne-Gousse et al. (2002)Fig 7b1.000Unsp 03G 09 05Kimball et al. (1997)Fig 27101.000Unsp 04G 33 02Zhan & Zhang (2005)Fig 22101.000Unsp 05G 52 01Pereira et al. (2002)Fig 221.000Unsp 10G 52 02Pereira et al. (2002)Fig 2a1.000Unsp 11G 53 01Grau et al. (2005)Fig 11.000Unsp 12G 56 01Jones et al. (1995)Fig 211.000Unsp 13G 63 01Bloomer & Crowe (1998)Fig 11.000TaxTaxDickinson (2003)Fig 11.000	Other 04	G 23 02	Johnsgard (1999)	Fig 2		0.500
Other 05 G 0 3 02 Dike et al. (2003) Fig 3 2 0.250 Other 06 G 74 06 Randi et al. (2000) Fig 6e 1.000 Other 07 G 72 02 Moulin et al. (2003) Fig 3 1.000 Other 07 G 72 02 Moulin et al. (2003) Fig 3 1.000 Other 08 G 06 01 Shibusawa et al. (2004b) Fig 6 1.000 Other 09 G 16 01 Stock & Bunch (1982) Fig 10 1.000 Other 11 G 20 01 Johnsgard (1983) Fig 1 1.000 Other 12 G 21 02 Johnsgard (1973) Fig 1 (down) 1.000 Other 13 G 22 02 Johnsgard (1988) Fig 3 1.000 Unsp 01 A 01 01 Donne-Gousse et al. (2002) Fig 7b 1.000 Unsp 03 G 09 05 Kimball et al. (1997) Fig 2710 1.000 Unsp 07 G 28 08 Cracraft et al. (2004) Fig 2710 1.000 Unsp 08 G 33 02 Zhan & Zhang (2005) Fig 2a 1.000	Other 05	G 03 01	Dike et al. (2003)	Fig 2	2	0.250
Other 06 G 74 06 Randi et al. (2000) Fig 6e 1.000 Other 07 G 72 02 Moulin et al. (2003) Fig 3 1.000 Other 08 G 06 01 Shibusawa et al. (2004b) Fig 6 1.000 Other 09 G 16 01 Stock & Bunch (1982) Fig 10 1.000 Other 11 G 20 01 Johnsgard (1983) Fig 1 (down) 1.000 Other 12 G 21 02 Johnsgard (1973) Fig 1 (down) 1.000 Other 13 G 22 02 Johnsgard (1988) Fig 3 1.000 Other 13 G 22 02 Johnsgard (1988) Fig 7b 1.000 Unsp 01 A 01 01 Donne-Gousse et al. (2002) Fig 1a 1.000 Unsp 03 G 09 05 Kimball et al. (1997) Fig 2710 1.000 Unsp 04 G 33 02 Zhan & Zhang (2005) Fig 2b 1.000 Unsp 08 G 33 02 Zhan & Zhang (2005) Fig 2b 1.000 Unsp 10 G 52 01 Pereira et al. (2002) Fig 2b 1.000 Unsp 11 </td <td>Other 05</td> <td>G 03 02</td> <td>Dike et al. (2003)</td> <td>Fig 3</td> <td>2</td> <td>0.250</td>	Other 05	G 03 02	Dike et al. (2003)	Fig 3	2	0.250
Other 07 G 72 02 Moulin et al. (2003) Fig 3 1.000 Other 08 G 06 01 Shibusawa et al. (2004b) Fig 6 1.000 Other 09 G 16 01 Stock & Bunch (1982) Fig 10 1.000 Other 11 G 20 01 Johnsgard (1983) Fig 1 1.000 Other 12 G 21 02 Johnsgard (1973) Fig 1 (down) 1.000 Other 13 G 22 02 Johnsgard (1988) Fig 3 1.000 Unsp 01 A 01 01 Donne-Gousse et al. (2002) Fig 1a 1.000 Unsp 02 A 30 08 Livezey (1997) Fig 7b 1.000 Unsp 03 G 09 05 Kimball et al. (1997) Fig 2710 1.000 Unsp 04 G 33 02 Zhan & Zhang (2005) Fig 2a 1.000 Unsp 08 G 33 02 Zhan & Zhang (2005) Fig 2a 1.000 Unsp 10 G 52 01 Pereira et al. (2002) Fig 2b 1.000 Unsp 11 G 53 01 Grau et al. (2005) Fig 21 1.000 Unsp 12	Other 06	G 74 06	Randi et al. (2000)	Fig 6e		1.000
Other 08 G 06 01 Shibusawa et al. (2004b) Fig 6 1.000 Other 09 G 16 01 Stock & Bunch (1982) Fig 10 1.000 Other 11 G 20 01 Johnsgard (1983) Fig 1 1.000 Other 12 G 21 02 Johnsgard (1973) Fig 1 (down) 1.000 Other 13 G 22 02 Johnsgard (1973) Fig 3 1.000 Other 13 G 22 02 Johnsgard (1988) Fig 3 1.000 Unsp 01 A 01 01 Donne-Gousse et al. (2002) Fig 1a 1.000 Unsp 02 A 30 08 Livezey (1997) Fig 7b 1.000 Unsp 03 G 09 05 Kimball et al. (1997) Fig 2710 1.000 Unsp 04 G 28 08 Cracraft et al. (2004) Fig 2710 1.000 Unsp 05 G 33 02 Zhan & Zhang (2005) Fig 2a 1.000 Unsp 09 G 52 01 Pereira et al. (2002) Fig 2b 1.000 Unsp 10 G 52 02 Pereira et al. (2005) Fig 21 1.000 Unsp 11 G 53 01 Grau et al. (2005) Fig 21 1.000 <	Other 07	G 72 02	Moulin <i>et al.</i> (2003)	Fig 3		1.000
Other 09 G 16 01 Stock & Bunch (1982) Fig 10 1.000 Other 11 G 20 01 Johnsgard (1983) Fig 1 1.000 Other 12 G 21 02 Johnsgard (1973) Fig 1 (down) 1.000 Other 13 G 22 02 Johnsgard (1988) Fig 3 1.000 Other 13 G 22 02 Johnsgard (1988) Fig 1a 1.000 Unsp 01 A 01 01 Donne-Gousse <i>et al.</i> (2002) Fig 1a 1.000 Unsp 02 A 30 08 Livezey (1997) Fig 3a 1.000 Unsp 03 G 09 05 Kimball <i>et al.</i> (1997) Fig 2710 1.000 Unsp 04 G 33 02 Zhan & Zhang (2005) Fig 2710 1.000 Unsp 08 G 33 02 Zhan & Zhang (2005) Fig 2a 1.000 Unsp 10 G 52 02 Pereira <i>et al.</i> (2002) Fig 2b 1.000 Unsp 11 G 53 01 Grace <i>et al.</i> (2005) Fig 1 1.000 Unsp 12 G 56 01 Jones <i>et al.</i> (1995) Fig 21 1.000 Unsp 13 G 63 01 Bloomer & Crowe (1998) Fig 1 1.000	Other 08	G 06 01	Shibusawa et al. (2004b)	Fig 6		1.000
Other 11 G 20 01 Johnsgard (1983) Fig 1 1.000 Other 12 G 21 02 Johnsgard (1973) Fig 1 (down) 1.000 Other 13 G 22 02 Johnsgard (1988) Fig 3 1.000 Unsp 01 A 01 01 Donne-Gousse et al. (2002) Fig 1a 1.000 Unsp 02 A 30 08 Livezey (1997) Fig 7b 1.000 Unsp 03 G 09 05 Kimball et al. (1997) Fig 3a 1.000 Unsp 04 G 33 02 Zhan & Zhang (2005) Fig 2710 1.000 Unsp 08 G 33 02 Zhan & Zhang (2005) Fig 2a 1.000 Unsp 10 G 52 01 Pereira et al. (2002) Fig 2a 1.000 Unsp 10 G 52 02 Pereira et al. (2002) Fig 2b 1.000 Unsp 11 G 53 01 Grace et al. (2002) Fig 1 1.000 Unsp 12 G 56 01 Jones et al. (1995) Fig 21 1.000 Unsp 13 G 63 01 Bloomer & Crowe (1998) Fig 1 1.000 Tax Tax Dickinson (2003) Fig 1 0.001	Other 09	G 16 01	Stock & Bunch (1982)	Fig 10		1.000
Other 12 G 21 02 Johnsgard (1973) Fig 1 (down) 1.000 Other 13 G 22 02 Johnsgard (1988) Fig 3 1.000 Unsp 01 A 01 01 Donne-Gousse et al. (2002) Fig 1a 1.000 Unsp 02 A 30 08 Livezey (1997) Fig 7b 1.000 Unsp 03 G 09 05 Kimball et al. (1997) Fig 3a 1.000 Unsp 04 G 30 02 Zhan & Zhang (2004) Fig 2710 1.000 Unsp 05 G 33 02 Zhan & Zhang (2005) Fig 2b 1.000 Unsp 09 G 52 01 Pereira et al. (2002) Fig 2a 1.000 Unsp 10 G 53 01 Grau et al. (2002) Fig 2b 1.000 Unsp 11 G 53 01 Grau et al. (2002) Fig 2b 1.000 Unsp 12 G 56 01 Jones et al. (1995) Fig 21 1.000 Unsp 13 G 63 01 Bloomer & Crowe (1998) Fig 1 1.000 Tax Tax Dickinson (2003) Jones Jones Jones	Other 11	G 20 01	Johnsgard (1983)	Fig 1		1.000
Other 13 G 22 02 Johnsgard (1988) Fig 3 1.000 Unsp 01 A 01 01 Donne-Gousse et al. (2002) Fig 1a 1.000 Unsp 02 A 30 08 Livezey (1997) Fig 7b 1.000 Unsp 03 G 09 05 Kimball et al. (1997) Fig 3a 1.000 Unsp 03 G 09 05 Kimball et al. (1997) Fig 2710 1.000 Unsp 07 G 28 08 Cracraft et al. (2004) Fig 2710 1.000 Unsp 08 G 33 02 Zhan & Zhang (2005) Fig 2b 1.000 Unsp 09 G 52 01 Pereira et al. (2002) Fig 2a 1.000 Unsp 10 G 52 02 Pereira et al. (2002) Fig 1 1.000 Unsp 11 G 53 01 Grau et al. (2005) Fig 1 1.000 Unsp 12 G 56 01 Jones et al. (1995) Fig 21 1.000 Unsp 13 G 63 01 Bloomer & Crowe (1998) Fig 1 1.000 Tax Tax Dickinson (2003) Fig 1 0.001	Other 12	G 21 02	Johnsgard (1973)	Fig 1 (down)		1.000
Unsp 01 A 01 01 Donne-Gousse et al. (2002) Fig 1a 1.000 Unsp 02 A 30 08 Livezey (1997) Fig 7b 1.000 Unsp 03 G 09 05 Kimball et al. (1997) Fig 3a 1.000 Unsp 07 G 28 08 Cracraft et al. (2004) Fig 2710 1.000 Unsp 08 G 33 02 Zhan & Zhang (2005) Fig 2b 1.000 Unsp 09 G 52 01 Pereira et al. (2002) Fig 2a 1.000 Unsp 10 G 52 02 Pereira et al. (2002) Fig 2b 1.000 Unsp 11 G 53 01 Grau et al. (2002) Fig 2b 1.000 Unsp 12 G 56 01 Jones et al. (2005) Fig 1 1.000 Unsp 13 G 63 01 Bloomer & Crowe (1998) Fig 1 1.000 Tax Tax Dickinson (2003) Fig 1 0.001	Other 13	G 22 02	Johnsgard (1988)	Fig 3		1.000
Unsp 02 A 30 08 Livezey (1997) Fig 7b 1.000 Unsp 03 G 09 05 Kimball et al. (1997) Fig 3a 1.000 Unsp 07 G 28 08 Cracraft et al. (2004) Fig 2710 1.000 Unsp 08 G 33 02 Zhan & Zhang (2005) Fig 2b 1.000 Unsp 09 G 52 01 Pereira et al. (2002) Fig 2a 1.000 Unsp 10 G 52 02 Pereira et al. (2002) Fig 2b 1.000 Unsp 11 G 53 01 Grau et al. (2005) Fig 1 1.000 Unsp 12 G 56 01 Jones et al. (2005) Fig 2l 1.000 Unsp 13 G 63 01 Bloomer & Crowe (1998) Fig 2l 1.000 Tax Tax Dickinson (2003) Fig 1 0.001	Unsp 01	A 01 01	Donne-Gousse et al. (2002)	Fig 1a		1.000
Unsp 03G 09 05Kimball et al. (1997)Fig 3a1.000Unsp 07G 28 08Cracraft et al. (2004)Fig 27101.000Unsp 08G 33 02Zhan & Zhang (2005)Fig 2b1.000Unsp 09G 52 01Pereira et al. (2002)Fig 2a1.000Unsp 10G 52 02Pereira et al. (2002)Fig 2b1.000Unsp 11G 53 01Grau et al. (2005)Fig 11.000Unsp 12G 56 01Jones et al. (1995)Fig 211.000Unsp 13G 63 01Bloomer & Crowe (1998)Fig 11.000TaxTaxDickinson (2003)Unsp 10.001	Unsp 02	A 30 08	Livezey (1997)	Fig 7b		1.000
Unsp 07 G 28 08 Cracraft et al. (2004) Fig 2710 1.000 Unsp 08 G 33 02 Zhan & Zhang (2005) Fig 2b 1.000 Unsp 09 G 52 01 Pereira et al. (2002) Fig 2a 1.000 Unsp 10 G 52 02 Pereira et al. (2002) Fig 2b 1.000 Unsp 11 G 53 01 Grau et al. (2005) Fig 1 1.000 Unsp 12 G 56 01 Jones et al. (1995) Fig 21 1.000 Unsp 13 G 63 01 Bloomer & Crowe (1998) Fig 1 1.000 Tax Tax Dickinson (2003) Unsp 1 0.001	Unsp 03	G 09 05	Kimball <i>et al.</i> (1997)	Fig 3a		1.000
Unsp 08 G 33 02 Zhan & Zhang (2005) Fig 2b 1.000 Unsp 09 G 52 01 Pereira et al. (2002) Fig 2a 1.000 Unsp 10 G 52 02 Pereira et al. (2002) Fig 2b 1.000 Unsp 11 G 53 01 Grau et al. (2002) Fig 1 1.000 Unsp 12 G 56 01 Jones et al. (1995) Fig 21 1.000 Unsp 13 G 63 01 Bloomer & Crowe (1998) Fig 1 1.000 Tax Tax Dickinson (2003) Unsp 1 0.001	Unsp 07	G 28 08	Cracraft <i>et al.</i> (2004)	Fig 2710		1.000
Unsp 09 G 52 01 Pereira <i>et al.</i> (2002) Fig 2a 1.000 Unsp 10 G 52 02 Pereira <i>et al.</i> (2002) Fig 2b 1.000 Unsp 11 G 53 01 Grau <i>et al.</i> (2005) Fig 1 1.000 Unsp 12 G 56 01 Jones <i>et al.</i> (1995) Fig 21 1.000 Unsp 13 G 63 01 Bloomer & Crowe (1998) Fig 1 1.000 Tax Tax Dickinson (2003) 0.001 0.001	Unsp 08	G 33 02	Zhan & Zhang (2005)	Fig 2b		1.000
Unsp 10 G 52 02 Pereira et al. (2002) Fig 2b 1.000 Unsp 11 G 53 01 Grau et al. (2005) Fig 1 1.000 Unsp 12 G 56 01 Jones et al. (1995) Fig 21 1.000 Unsp 13 G 63 01 Bloomer & Crowe (1998) Fig 1 1.000 Tax Tax Dickinson (2003) 0.001	Unsp 09	G 52 01	Pereira et al. (2002)	Fig 2a		1.000
Unsp 11 G 53 01 Grau et al. (2005) Fig 1 1.000 Unsp 12 G 56 01 Jones et al. (1995) Fig 21 1.000 Unsp 13 G 63 01 Bloomer & Crowe (1998) Fig 1 1.000 Tax Tax Dickinson (2003) 0.001	Unsp 10	G 52 02	Pereira et al. (2002)	Fig 2b		1.000
Unsp 12 G 56 01 Jones <i>et al.</i> (1995) Fig 21 1.000 Unsp 13 G 63 01 Bloomer & Crowe (1998) Fig 1 1.000 Tax Tax Dickinson (2003) 0.001	Unsp 11	G 53 01	Grau et al. (2005)	Fig 1		1.000
Unsp 13 G 63 01 Bloomer & Crowe (1998) Fig 1 1.000 Tax Tax Dickinson (2003) 0.001	Unsp 12	G 56 01	Jones <i>et al.</i> (1995)	Fig 21		1.000
TaxTaxDickinson (2003)0.001	Unsp 13	G 63 01	Bloomer & Crowe (1998)	Fig 1		1.000
	Tax	Tax	Dickinson (2003)			0.001

References

- Akishinonomiya, F., Miyake, T., Takada, M., Ohno, S., & Kondo, N. (1995). The genetic link between the chinese bamboo partridge (*Bambusicola thoracica*) and the chicken and junglefowls of the genus *Gallus*. *Proceedings of the National Academy of Sciences of USA*, 92, 11053-11056.
- Akishinonomiya, F., Miyake, T., Takada, M., Shingu, R., Endo, T., Gojobori, T., Kondo, N., & Ohno, S. (1996). Monophyletic origin and unique dispersal patterns of domestic fowls. *Proceedings of the National Academy of Sciences of USA*, 93, 6792-6795.
- Armstrong, M. H., Braun, E. L., & Kimball, R. T. (2001). Phylogenetic utility of avian ovomucoid intron G: A comparison of nuclear and mitochodrial phylogenies in Galliformes. *Auk*, 118, 799-804.
- Avise, J. C., Nelson, W. S., & Sibley, C. G. (1994). Why one-kilobase sequences from mitochondrial DNA fail to solve the Hoatzin phylogenetic enigma. *Molecular Phylogenetics and Evolution*, 3, 175-184.
- Backstrom, N., Ceplitis, H., Berlin, S., & Ellegren, H. (2005). Gene conversion drives the evolution of *HINTW*, an ampliconic gene on the female-specific avian W chromosome. *Molecular Biology and Evolution*, 22, 1992-1999.
- Birks, S. M., & Edwards, S. V. (2002). A phylogeny of the megapodes (Aves: Megapodiidae) based on nuclear and mitochondrial DNA sequences. *Molecular Phylogenetics and Evolution*, 23, 408-421.
- Bloomer, P., & Crowe, T. M. (1998). Francolin phylogenetics: molecular, morphobehavioral, and combined evidence. *Molecular Phylogenetics and Evolution*, 9, 236-254.
- Bourdon, E. (2005). Osteological evidence for sister groups relationship between pseudo-toothed birds (Aves: Odontopterygiformes) and waterfowls (Anseriformes). *Naturwissenschaften*, 92, 586-591.
- Bush, K. L., & Strobeck, C. (2003). Phylogenetic relationships of the Phasianidae reveals possible non-pheasant taxa. *Journal of Heredity*, 94, 472-489.
- Butorina, O. T., Seibold, I., Helbig, A., & Solovenchuk, L. L. (2000). Evolution of the cytochrome b gene in the mitochondrial genome of Tetraonidae. *Russian Journal of Genetics*, 36, 761-766.

- Butorina, O. T., & Solovenchuk, L. L. (2004). The use of c-mos nuclear gene as a phylogenetic marker in Tetraonidae birds. *Russian Journal of Genetics*, 40, 1080-1084.
- Cracraft, J., Feinstein, J., Garcia-Moreno, J., Barker, F. K., Stanley, S., Sorenson, M. D., Braun, M., Cibois, A., Yuri, T., Harshman, J., et al. 2004. Phylogenetic relationships among modern birds (Neornithes): Toward an avian tree of life. In J. Cracraft & M. J. Donoghue (Eds) *Assembling the tree of life* pp. 468-489. Oxford: Oxford University Press.
- Crowe, T. M. (1978). The evolution of guinea-fowl (Galliformes, Phasianidae, Numidinae) taxonomy, phylogeny, speciation and biogeography. *Annals of the South African Museum*, 76, 43-136.
- Crowe, T. M., Bowie, R. C. K., Bloomer, P., Mandiwana, T. G., Hedderson, T. A. J., Randi, E., Pereira, S. L., & Wakeling, J. (2006). Phylogenetics, biogeography and classification of, and character evolution in, gamebirds (Aves: Galliformes): Effects of character exclusion, data partitioning and missing data. *Cladistics*, 22, 495-532.
- Crowe, T. M., Harley, E. H., Jakutowicz, M. B., Komen, J., & Crowe, A. A. (1992). Phylogenetic, taxonomic and biogeographical implications of genetic, morphological, and behavioral variation in francolins (Phasianidae: *Francolinus*). *Auk*, 109, 24-42.
- Dickinson, E. C. (2003). *The Howard and Moore complete checklist of the birds of the world*. London: Christopher Helm.
- Dimcheff, D. E., Drovetski, S. V., Krishnan, M., & Mindell, D. P. (2000). Cospeciation and horizontal transmission of avian sarcoma and leukosis virus gag genes in galliform birds. *Journal* of Virology, 74, 3984-3995.
- Dimcheff, D. E., Drovetski, S. V., & Mindell, D. P. (2002). Phylogeny of tetraoninae and other galliform birds using mitochondrial 12S and ND2 genes. *Molecular Phylogenetics and Evolution*, 24, 203-215.
- Donne-Gousse, C., Laudet, V., & Hanni, C. (2002). A molecular phylogeny of anseriformes based on mitochondrial DNA analysis. *Molecular Phylogenetics and Evolution*, 23, 339-356.
- Drovetski, S. V. (2002). Molecular phylogeny of grouse: Individual and combined performance of W-linked, autosomal, and mitochondrial loci. *Systematic Biology*, 51, 930-945.

- 21. Dyke, G. J. (2003). The phylogenetic position of Gallinuloides Eastman (Aves: Galliformes) from the tertiary of North America. *Zootaxa*, 199, 1-10.
- Eguchi, Y., Ikehara, T., & Eguchi, T. (2000). Amino acid sequences of hemoglobin from guinea fowl (*Numida meleagri*) and California quail (*Lophortyx californica*) with phylogenetic analysis of major groups of Galliformes. *Journal of Protein Chemistry*, 19, 457-467.
- Eguchi, Y., Ikehara, T., Kayo, S., Eguchi, T., & Takei, H. (1995). Amino acid sequence of alphaand beta-polypeptide chains of turkey (*Meleagris gallopavo*) hemoglobin. *Biological Chemistry Hoope-Seyler*, 376, 437-440.
- Ellsworth, D. L., Honeycutt, R. L., & Silvy, N. J. (1995). Phylogenetic relationships among North American grouse inferred from restriction endonuclease analysis of mitochondrial DNA. *Condor*, 97, 492-502.
- Ellsworth, D. L., Honeycutt, R. L., & Silvy, N. J. (1996). Systematics of grouse and ptarmigan determined by nucleotide sequences of the mitochondrial cytochrome *b* gene. *Auk*, 113, 811-822.
- Ericson, P. G. (1997). Systematic relationships of the paleogene family Presbyornithidae (Aves: Anseriformes). *Zoological Journal of the Linnean Society*, 121, 429-483.
- Fain, M. G., & Houde, P. (2004). Parallel radiations in the primary clades of birds. *Evolution*, 58, 2558-2573.
- Garcia-Moreno, J., Sorenson, M. D., & Mindell, D. P. (2003). Congruent avian phylogenies inferred from mitochondrial and nuclear DNA sequences. *Journal of Molecular Evolution*, 57, 27-37.
- Grau, E. T., Pereira, S. L., Silveira, L. F., Hofling, E., & Wajntal, A. (2005). Molecular phylogenetics and biogeography of neotropical piping guans (Aves: Galliformes): *Pipile bonaparte*, 1856 is synonym of *Aburria reichenbach*, 1853. *Molecular Phylogenetics and Evolution*, 35, 637-645.
- Gulas-Wroblewski, B. E., & Wroblewski, A. F. J. (2003). A crown-group galliform bird from the middle Eocene bridger formation of Wyoming. *Palaeontology*, 46, 1269-1280.
- Gutierrez, R. J., Barrowclough, G. F., & Groth, J. G. (2000). A classification of the grouse (Aves: Tetraoninae) based on mitochondrial DNA sequences. *Wildlife Biology*, 6, 205-211.

- Gutierrez, R. J., Zink, R. M., & Yang, S. Y. (1983). Genic variation, systematic, and biogeographic relationships of some galliform birds. *Auk*, 100, 33-47.
- Hedges, S. B., Simmons, M. D., van Dijk, M. A. M., Caspers, G. J., de Jong, W. W., & Sibley, C. G. (1995). Phylogenetic relationships of the hoatzin, an enigmatic South American bird. *Proceedings of the National Academy of Sciences of USA*, 92, 11662-11665.
- Helm-Bychowski, K. M., & Wilson, A. C. (1986). Rates of nuclear DNA evolution in pheasantlike birds: Evidence from restriction maps. *Proceedings of the National Academy of Sciences of* USA, 83, 688-692.
- Henderson, J. Y., Moir, A. J. G., Fothergill, L. A., & Fothergill, J. E. (1981). Sequences of sixteen phosphoserine peptides from ovalbumins of eight species. *European Journal of Biochemistry*, 114, 439-450.
- Hennache, A., Rasmussen, P., Lucchini, V., Rimondi, S., & Randi, E. (2003). Hybrid origin of the imperial pheasant *Lophura imperialis* (Delacour and Jabouille, 1924) demonstrated by morphology, hybrid experiments, and DNA analyses. *Biological Journal of the Linnean Society*, 80, 573-600.
- John, J., Cotter, J., & Quinn, T. W. (2005). A recent chicken repeat 1 retrotransposition confirms the Coscoroba-Cape Barren goose clade. *Molecular Phylogenetics and Evolution*, 37, 83-90.
- Johnsgard, P. A. (1973). Grouse and quails of North America. Lincoln: University of Nebraska Press.
- 39. Johnsgard, P. A. (1983). The grouse of the world. Lincoln: University of Nebraska Press.
- Johnsgard, P. A. (1988). *The quails, partridges, and francolins of the world*. Oxford: Oxford University Press.
- Johnsgard, P. A. (1999). *The pheasants of the world: biology and natural history*. Washington, D. C.: Smithsonian Institution Press.
- Johnson, K. P., & Sorenson, M. D. (1998). Comparing molecular evolution in two mitochondrial protein coding genes (cytochrome *b* and ND2) in the dabbling ducks (tribe: Anatini). *Molecular Phylogenetics and Evolution*, 10, 82-94.

- Johnson, K. P., & Sorenson, M. D. (1999). Phylogeny and biogeography of dabbling ducks (genus: *Anas*): A comparison of molecular and morphological evidence. *Auk*, 116, 792-803.
- Jolles, J., Ibrahimi, I. M., Prager, E. M., Schoentgen, F., Jolles, P., & Wilson, A. C. (1979). Amino acid sequences of pheasant lysozyme: Evolutionary change affecting processing of prelysozyme. *Biochemistry*, 18, 2744-2752.
- Jones, D. N., Dekker, R. W. R. J., & Roselaar, C. S. (1995). *The megapodes: Megapodiidae*. Oxford: Oxford University Press.
- Kennedy, M., & Spencer, H. (2000). Phylogeny, biogeography, and taxonomy of Australasian teals. *Auk*, 117, 154-163.
- Kessler, L., & Avise, J. C. (1984). Systematic relationships among waterfowl (Anatidae) inferred from restriction endonuclease analysis of mitochondrial DNA. *Systematic Zoology*, 33, 370-380.
- Kimball, R. T., Braun, E. L., & Ligon, J. D. (1997). Resolution of the phylogenetic position of the Congo peafowl, *Afropavo congensis*: a biogeographic evolutionary enigma. *Proceedings of the Royal Society B*, 264, 1517-1523.
- Kimball, R. T., Braun, E. L., Ligon, J. D., Lucchini, V., & Randi, E. (2001). A molecular phylogeny of the peacock-pheasants (Galliformes: *Polyplectron* spp.) indicates loss and reduction of ornamental traits and display behaviours. *Biological Journal of the Linnean Society*, 73, 187-198.
- Kimball, R. T., Braun, E. L., Zwartjes, P. W., Crowe, T. M., & Ligon, J. D. (1999). A molecular phylogeny of the pheasants and partridges suggests that these lineages are not monophyletic. *Molecular Phylogenetics and Evolution*, 11, 38-54.
- Kornegay, J. R., Kocher, T. D., Williams, L. A., & Wilson, A. C. (1993). Pathways of lysozyme evolution inferred from the sequences of cytochrome *b* in birds. *Journal of Molecular Evolution*, 37, 367-379.
- Livezey, B. C. (1986a). A phylogenetic analysis of recent anseriform genera using morphological characters. *Auk*, 103, 737-754.
- Livezey, B. C. (1986b). Phylogeny and historical biogeography of steamer-ducks (Anatidae: *Tachyeres*). *Systematic Zoology*, 35, 458-469.

- Livezey, B. C. (1989). Phylogenetic relationships and incipient flightlessness of the extinct Auckland islands merganser. *Wilson Bulletin*, 101, 410-435.
- Livezey, B. C. (1991). A phylogenetic analysis and classification of recent dabbling ducks (tribe Anatini) based on comparative morphology. *Auk*, 108, 471-507.
- Livezey, B. C. (1995a). A phylogenetic analysis of the whistling and white-backed ducks (Anatidae: Dendrocygninae) using morphological characters. *Annals of Carnegie Museum*, 64, 65-97.
- Livezey, B. C. (1995b). Phylogeny and comparative ecology of stiff-tailed ducks (Anatidae: Oxyurini). *Wilson Bulletin*, 107, 214-234.
- Livezey, B. C. (1995c). Phylogeny and evolutionary ecology of modern seaducks (Anatidae: Mergini). *Condor*, 97, 233-255.
- Livezey, B. C. (1996a). A phylogenetic analysis of geese and swans (Anseriformes: Anserinae), including selected fossil species. *Systematic Biology*, 45, 415-450.
- Livezey, B. C. (1996b). A phylogenetic analysis of modern pochards (Anatidae: Aythyini). *Auk*, 113, 74-93.
- Livezey, B. C. (1996c). A phylogenetic reassessment of the Tadornine-Anatine divergence (Aves: Anseriformes: Anatidae). *Annals of Carnegie Museum*, 65, 27-88.
- Livezey, B. C. (1997a). A phylogenetic analysis of basal anseriformes, the fossil *Presbyornis*, and the interordinal relationships of waterfowl. *Zoological Journal of the Linnean Society*, 121, 361-428.
- Livezey, B. C. (1997b). A phylogenetic analysis of modern sheldgeese and shelducks (Anatidae, Tadornini). *Ibis*, 139, 51-66.
- Livezey, B. C., & Martin, L. D. (1988). The systematic position of the Miocene anatid *Anas*[?] *blanchardi* Milne-Edwards. *Journal of Vertebrate Paleontology*, 8, 196-211.
- Livezey, B. C., & Zusi, R. L. (2001). Higher-order phylogenetics of modern aves based on comparative anatomy. *Netherlands Journal of zoology*, 51, 179-205.

- Lucchini, V., Hoglund, J., Klaus, S., Swenson, J., & Randi, E. (2001). Historical biogeography and a mitochondrial DNA phylogeny of grouse and ptarmigan. *Molecular Phylogenetics and Evolution*, 20, 149-162.
- 67. Luzhang, R., Lixun, Z., Longying, W., Qingwei, S., & Naifa, L. (2005). Phylogeny and molecular evolution of tetraogallus in China. *Biochemical Genetics*, 43, 507-518.
- Madsen, C. S., McHugh, K. P., & De Kloet, S. R. (1988). A partial classification of waterfowl (Anatidae) based on single copy DNA. *Auk*, 105, 452-459.
- McCracken, K. G., Harshman, J., McClellan, D. A., & Afton, A. D. (1999). Data set incongruence and correlated character evolution: An example of functional convergence in the hind-limbs of stifftail diving ducks. *Systematic Biology*, 48, 683-714.
- McCracken, K. G., & Sorenson, M. D. (2005). Is homoplasy or lineage sorting the source of incongruent mtDNA and nuclear gene trees in the stiff-tailed ducks (*Nomonyx-Oxyura*)? *Systematic Biology*, 54, 35-55.
- Moulin, S., Randi, E., Tabarroni, C., & Hennache, A. (2003). Mitochondrial DNA diversification among the subspecies of the silver and Kalij pheasants, *Lophura nycthemera* and *l. Leucomelanos*, phasianidae. *Ibis*, 145, E1-E11.
- Munechika, I., Suzuki, H., & Wakana, S. (1997). Comparative analysis of the restriction endonuclease cleavage patterns of mitochondrial DNA in the genus *Gallus*. *Japanese Poultry Science*, 34, 184-188.
- Nishibori, M., Hayashi, T., & Yasue, H. (2004). Complete nucleotide sequence of *Numida* meleagris (helmeted guineafowl) mitochondrial genome. *Journal of Poultry Science*, 41, 259-268.
- Nishibori, M., Shimogiri, T., Hayashi, T., & Yasue, H. (2005). Molecular evidence for hybridization of species in the genus *Gallus* except for *Gallus varius*. *Animal Genetics*, 36, 367-375.
- 75. Nishibori, M., Tsudzuki, M., Hayashi, T., Yamamoto, Y., & Yasue, H. (2002). Complete nucleotide sequence of the *Coturnix chinensis* (blue-breasted quail) mitochondrial genome and a phylogenetic analysis with related species. *Journal of Heredity*, 93, 439-444.

- Patton, J. C., & Avise, J. C. (1986). Evolutionary genetics of birds IV: Rates of protein divergence in waterfowl (Anatidae). *Genetica*, 68, 129-143.
- 77. Paxinos, E. E., James, H. F., Olson, S. L., Sorenson, M. D., Jackson, J., & Fleischer, R. C. (2002). MtDNA from fossils reveals a radiation of Hawaiian geese recently derived from the Canada goose (*Branta canadensis*). *Proceedings of the National Academy of Sciences of USA*, 99, 1399-1404.
- Pereira, S. L., & Baker, A. (2004). Vicariant speciation of currassows (Aves, Cracidae): A hypothesis based on mitochondrial DNA phylogeny. *Auk*, 121, 682-694.
- Pereira, S. L., & Baker, A. J. (2006). A molecular timescale for galliform birds accounting for uncertainty in time estimates and heterogeneity of rates of DNA substitutions across lineages and sites. *Molecular Phylogenetics and Evolution*, 38, 499-509.
- Pereira, S. L., Baker, A. J., & Wajntal, A. (2002). Combined nuclear and mitochondrial DNA sequences resolve generic relationships within the Cracidae (Galliformes, Aves). *Systematic Biology*, 51, 946-958.
- Peters, J. L., McCracken, K. G., Zhuravlev, Y. N., Lu, Y., Wilson, R. E., Johnson, K. P., & Omland, K. E. (2005). Phylogenetics of wigeons and allies (Anatidae: *Anas*): The importance of sampling multiple loci and multiple individuals. *Molecular Phylogenetics and Evolution*, 35, 209-224.
- Pimentel-Smith, G. E., Shi, L., Drummond, P., Tu, Z., & Smith, E. J. (2001). Amplification of sequence tagged sites in five avian species using heterologous oligonucleotides. *Genetica*, 110, 219-226.
- Prager, E. M., & Wilson, A. C. (1976). Congruency of phylogenies derived from different proteins: A molecular analysis of the phylogenetic position of cracid birds. *Journal of Molecular Evolution*, 9, 45-57.
- Randi, E. (1996). A mitochondrial cytochrome *b* phylogeny of the *Alectoris* partridges. *Molecular Phylogenetics and Evolution*, 6, 214-227.
- 85. Randi, E., Fusco, G., Lorenzini, R., & Crowe, T. M. (1991). Phylogenetic relationships and rates of allozyme evolution within the phasianidae. *Biochemical Systematics and Ecology*, 19, 213-221.

- Randi, E., & Lucchini, V. (1998). Organization and evolution of the mitochondrial DNA control region in the avian genus *Alectoris*. *Journal of Molecular Evolution*, 47, 449-462.
- Randi, E., Lucchini, V., Armijo-Prewitt, T., Kimball, R. T., L., B. E., & Ligon, J. D. (2000).
 Mitochondrial DNA phylogeny and speciation in the *Tragopans*. *Auk*, 117, 1003-1015.
- Randi, E., Lucchini, V., Hennache, A., Kimball, R. T., Braun, E. L., & Ligon, J. D. (2001). Evolution of the mitochondrial DNA control region and cytochrome *b* genes and the inference of phylogenetic relationships in the avian genus *Lophura* (Galliformes). *Molecular Phylogenetics and Evolution*, 19, 187-201.
- Randi, E., Meriggi, A., Lorenzini, R., Fsco, G., & Alkon, P. U. (1992). Biochemical analysis of relationships of mediterranean *Alectoris* partridges. *Auk*, 109, 358-367.
- Ruokonen, M., Kvist, L., & Lumme, J. (2000). Close relatedness between mitochondrial DNA from seven *Anser* goose species. *Journal of Evolutionary Biology*, 13, 532-540.
- Shibusawa, M., Nishibori, M., Nishida-Umehara, C., Tsudzuki, M., Masabanda, J., Griffin, D. K., & Matsuda, Y. (2004a). Karyotypic evolution in the Galliformes: An examination of the process of karyotypic evolution by comparison of the molecular cytogenetic findings with the molecular phylogeny. *Cytogenetic and Genome Research*, 106, 111-119.
- Shibusawa, M., Nishida-Umehara, C., Tsudzuki, M., Masabanda, J., Griffin, D. K., & Matsuda, Y. (2004b). A comparative karyological study of the blue-breasted quail (*Coturnix chinensis*, Phasianidae) and California quail (*Callipepla californica*, odontophoridae). *Cytogenetic and Genome Research*, 106, 82-90.
- Sibley, C. G., & Ahlquist, J. E. (1990). *Phylogeny and classification of birds: A study in molecuular evolution*. New Heaven: Yale University Press.
- Smith, E. J., Shi, L., & Tu, Z. (2005). *Gallus gallus* aggrecan gene-based phylogenetic analysis of selected avian taxonomic groups. *Genetica*, 124, 23-32.
- Sorenson, M. D., Oneal, E., Garcia-Moreno, J., & Mindell, D. P. (2003). More taxa, more characters: The hoatzin problem is still unresolved. *Molecular Biology and Evolution*, 20, 1484-1499.

- Sraml, M., Christidis, L., Easteal, S., Horn, P., & Collet, C. (1996). Molecular relationships within Australasian waterfowl (Anseriformes). *Australian Journal of Zoology*, 44, 47-58.
- 97. Stock, A. D., & Bunch, T. D. (1982). The evolutionary implications of chromosome banding pattern homologies in the bird order Galliformes. *Cytogenetics and Cell Genetics*, 34, 136-148.
- Tsam, C., Rao, G., Ji, J., Suo, L., Wan, Q., & Fang, S. (2003). Taxonomic status of crossoptilon harmani and a phylogenetic study of the genus *Crossoptilon*. *Acta Zootaxonomica Sinica*, 28, 173-179.
- Tuohy, J. M., McHugh, K. P., & De Kloet, S. R. (1992). Systematic relationships among some Anatini as derived from restriction-endonuclease analysis of a repeated DNA component. *Auk*, 109, 465-473.
- 100. van Tuinen, M., & Hedges, S. B. (2001). Calibration of avian molecular clocks. *Molecular Biology and Evolution*, 18, 206-213.
- 101. Wada, Y., Yamada, Y., Nishibori, M., & Yasue, H. (2004). Complete nucleotide sequence of mitochondrial genome in Silkie fowl (*Gallus gallus var. domesticus*). Journal of Poultry Science, 41, 76-82.
- 102. Wen, L., Zhang, L., & Liu, N. (2005). Phylogenetic relationship of *Perdix dauuricae* inferred from mitochondrial cytochrome *b* gene. *Zoological Research*, 26, 69-75.
- 103. Wu, A., Ding, W., Zhang, Z., & Zhan, X. (2005). Phylogenetic relationships of the avian genus Crossoptilon. Acta Zoologica Sinica, 51, 898-902.
- 104. Young, H. G., & Rhymer, J. M. (1998). Meller's duck: A threatened species receives recognition at last. *Biodiversity and conservation*, 7, 1313-1323.
- 105.Zhan, X., J., & Zhang, Z. W. (2005). Molecular phylogeny of avian genus *Syrmaticus* based on the mitochondrial cytochrome *b* gene and control region. *Zoological Science*, 22, 427-435.
- 106.Zhan, X., Zhang, Z., Wu, A., & Tao, Y. (2003). Phylogenetic relationships of monal pheasants
 Lophophorus inferred from sequences of mitochondrial cytochrome *b* gene. *Zoological Research*, 24, 337-342.

- 107.Zimmer, R., Erdtmann, B., Thomas, W. K., & Quinn, T. W. (1994). Phylogenetic analysis of the Coscoroba coscoroba using mitochondrial srRNA gene sequences. *Molecular Phylogenetics and Evolution*, 3, 85-91.
- 108.Zink, R. M., & Balckwell, R. C. (1998). Molecular systematics of the scaled quail complex (genus *Callipepla*). *Auk*, 115, 394-403.

rQS values for the strict consensus supertree, indicating nodal support (\pm SE) among the set of source trees together with the number of source trees supporting, conflicting or equivocal with a given node. Node numbers refer to Figs 2 and 3.

Node	Clade		Number of	Number of	Number of
number	size	$rQS \pm SE$	matches	mismatches	equivocal matches
1	376	0.265 ± 0.023	102	0	283
2	214	0.252 ± 0.023	99	2	284
3	13	0.055 ± 0.012	22	1	362
4	12	0.000 ± 0.011	9	9	367
5	11	0.034 ± 0.014	21	8	356
6	4	0.039 ± 0.011	16	1	368
7	3	0.008 ± 0.005	3	0	382
8	2	0.008 ± 0.005	3	0	382
9	163	0.252 ± 0.024	104	7	274
10	6	0.026 ± 0.010	12	2	371
11	4	0.047 ± 0.012	20	2	363
12	3	0.018 ± 0.009	10	3	372
13	2	0.005 ± 0.004	2	0	383
14	2	0.005 ± 0.004	2	0	383
15	157	0.018 ± 0.011	12	5	368
16	155	$\textbf{-0.018} \pm 0.007$	0	7	378
17	154	-0.016 ± 0.006	0	6	379
18	152	-0.023 ± 0.024	40	49	296
19	139	0.005 ± 0.013	13	11	361
20	135	0.213 ± 0.027	103	21	261

Node	Clade		Number of	Number of	Number of
number	size	$rQS \pm SE$	matches	mismatches	equivocal matches
21	90	-0.034 ± 0.017	15	28	342
22	86	0.000 ± 0.028	56	56	273
23	68	-0.094 ± 0.023	22	58	305
24	12	-0.003 ± 0.015	16	17	352
25	5	0.034 ± 0.014	21	8	356
26	3	0.094 ± 0.015	37	1	347
27	2	0.036 ± 0.010	14	0	371
28	2	0.047 ± 0.011	18	0	367
29	7	0.021 ± 0.007	8	0	377
30	3	0.013 ± 0.007	6	1	378
31	2	0.016 ± 0.007	7	1	377
32	4	0.008 ± 0.007	5	2	378
33	3	0.013 ± 0.007	6	1	378
34	2	0.005 ± 0.004	2	0	383
35	56	0.148 ± 0.025	80	23	282
36	22	-0.005 ± 0.020	28	30	327
37	20	0.003 ± 0.022	37	36	312
38	18	0.106 ± 0.019	50	9	326
39	17	0.008 ± 0.017	24	21	340
40	15	0.148 ± 0.020	63	6	316
41	6	-0.026 ± 0.019	22	32	331
42	2	0.021 ± 0.015	21	13	351
43	4	0.055 ± 0.015	28	7	350
44	2	0.052 ± 0.013	24	4	357
45	2	0.055 ± 0.014	25	4	356
46	9	-0.062 ± 0.020	17	41	327

Node	Clade		Number of	Number of	Number of
number	size	$rQS \pm SE$	matches	mismatches	equivocal matches
47	6	0.034 ± 0.019	32	19	334
48	2	0.021 ± 0.007	8	0	377
49	4	0.039 ± 0.019	34	19	332
50	3	0.049 ± 0.014	25	6	354
51	2	-0.013 ± 0.015	13	18	354
52	3	0.029 ± 0.017	26	15	344
53	2	0.096 ± 0.015	37	0	348
54	2	0.075 ± 0.013	29	0	356
55	2	0.018 ± 0.008	8	1	376
56	2	0.031 ± 0.009	12	0	373
57	34	0.005 ± 0.018	24	22	339
58	25	0.008 ± 0.013	14	11	360
59	24	0.088 ± 0.015	36	2	347
60	22	0.016 ± 0.018	26	20	339
61	20	-0.023 ± 0.009	2	11	372
62	17	0.023 ± 0.017	26	17	342
63	12	0.016 ± 0.013	16	10	359
64	11	0.013 ± 0.006	5	0	380
65	10	0.005 ± 0.007	5	3	377
66	4	-0.003 ± 0.006	2	3	380
67	3	-0.003 ± 0.006	2	3	380
68	2	-0.003 ± 0.006	2	3	380
69	6	0.034 ± 0.009	13	0	372
70	3	0.008 ± 0.006	4	1	380
71	2	0.013 ± 0.007	6	1	378
72	3	0.005 ± 0.008	6	4	375

Node	Clade	0.0.05	Number of	Number of	Number of
number	size	$rQS \pm SE$	matches	mismatches	equivocal matches
73	2	0.018 ± 0.007	7	0	378
74	5	0.023 ± 0.014	19	10	356
75	2	0.013 ± 0.006	5	0	380
76	3	0.034 ± 0.009	13	0	372
77	2	-0.016 ± 0.008	2	8	375
78	3	0.026 ± 0.008	10	0	375
79	2	0.026 ± 0.008	10	0	375
80	2	0.005 ± 0.004	2	0	383
81	2	-0.003 ± 0.007	3	4	378
82	9	-0.003 ± 0.015	16	17	352
83	3	0.010 ± 0.005	4	0	381
84	2	0.005 ± 0.005	3	1	381
85	6	0.021 ± 0.015	20	12	353
86	5	0.044 ± 0.010	17	0	368
87	4	0.018 ± 0.009	9	2	374
88	3	-0.010 ± 0.010	5	9	371
89	2	-0.003 ± 0.007	3	4	378
90	18	0.010 ± 0.016	20	16	349
91	5	0.075 ± 0.017	37	8	340
92	4	0.073 ± 0.013	28	0	357
93	3	0.029 ± 0.011	14	3	368
94	2	0.005 ± 0.013	13	11	361
95	13	-0.018 ± 0.009	2	9	374
96	12	0.003 ± 0.010	8	7	370
97	7	0.005 ± 0.005	3	1	381
98	6	0.018 ± 0.010	11	4	370

Node	Clade		Number of	Number of	Number of
number	size	$rQS \pm SE$	matches	mismatches	equivocal matches
99	4	0.029 ± 0.010	13	2	370
100	3	0.013 ± 0.010	10	5	370
101	2	0.005 ± 0.005	3	1	381
102	2	-0.013 ± 0.009	3	8	374
103	5	-0.013 ± 0.010	5	10	370
104	4	0.005 ± 0.005	3	1	381
105	3	0.010 ± 0.005	4	0	381
106	2	0.010 ± 0.005	4	0	381
107	4	-0.013 ± 0.009	3	8	374
108	3	0.013 ± 0.006	5	0	380
109	45	0.044 ± 0.022	43	26	316
110	39	-0.018 ± 0.011	5	12	368
111	37	-0.008 ± 0.005	0	3	382
112	36	-0.031 ± 0.009	0	12	373
113	35	-0.005 ± 0.012	9	11	365
114	31	-0.008 ± 0.010	6	9	370
115	7	0.052 ± 0.011	20	0	365
116	2	-0.003 ± 0.011	8	9	368
117	5	0.057 ± 0.013	24	2	359
118	4	0.026 ± 0.012	15	5	365
119	3	0.047 ± 0.011	19	1	365
120	2	0.044 ± 0.010	17	0	368
121	24	0.023 ± 0.010	12	3	370
122	23	0.013 ± 0.009	8	3	374
123	16	0.013 ± 0.009	8	3	374
124	12	0.003 ± 0.010	8	7	370

Node	Clade		Number of	Number of	Number of
number	size	$rQS \pm SE$	matches	mismatches	equivocal matches
125	8	-0.003 ± 0.010	7	8	370
126	7	0.005 ± 0.010	9	7	369
127	6	0.005 ± 0.005	3	1	381
128	5	-0.008 ± 0.009	4	7	374
129	4	0.016 ± 0.007	7	1	377
130	2	0.018 ± 0.010	11	4	370
131	4	0.000 ± 0.005	2	2	381
132	3	0.010 ± 0.005	4	0	381
133	7	0.010 ± 0.005	4	0	381
134	6	0.000 ± 0.005	2	2	381
135	5	0.000 ± 0.005	2	2	381
136	3	0.005 ± 0.005	3	1	381
137	2	0.010 ± 0.005	4	0	381
138	4	0.005 ± 0.004	2	0	383
139	3	0.005 ± 0.004	2	0	383
140	2	0.005 ± 0.004	2	0	383
141	2	0.005 ± 0.004	2	0	383
142	6	0.099 ± 0.017	43	5	337
143	4	0.042 ± 0.010	16	0	369
144	3	0.005 ± 0.009	7	5	373
145	2	-0.003 ± 0.005	1	2	382
146	13	0.021 ± 0.007	8	0	377
147	12	0.065 ± 0.015	29	4	352
148	7	0.026 ± 0.015	21	11	353
149	6	0.068 ± 0.015	31	5	349
150	4	0.018 ± 0.007	7	0	378

Node	Clade		Number of	Number of	Number of
number	size	$rQS \pm SE$	matches	mismatches	equivocal matches
151	2	0.031 ± 0.009	12	0	373
152	2	0.026 ± 0.008	10	0	375
153	5	0.005 ± 0.004	2	0	383
154	4	0.016 ± 0.006	6	0	379
155	3	0.005 ± 0.004	2	0	383
156	2	0.005 ± 0.004	2	0	383
157	2	0.005 ± 0.004	2	0	383
158	2	-0.003 ± 0.005	1	2	382
159	17	0.099 ± 0.015	38	0	347
160	5	0.021 ± 0.009	10	2	373
161	3	0.026 ± 0.012	16	6	363
162	2	0.021 ± 0.008	9	1	375
163	2	0.003 ± 0.003	1	0	384
164	11	0.023 ± 0.013	18	9	358
165	10	0.036 ± 0.010	14	0	371
166	9	0.026 ± 0.008	10	0	375
167	2	0.018 ± 0.007	7	0	378
168	7	0.026 ± 0.008	10	0	375
169	5	0.016 ± 0.008	8	2	375
170	3	0.018 ± 0.007	7	0	378
171	2	0.008 ± 0.007	5	2	378
172	2	0.021 ± 0.008	9	1	375
173	2	0.026 ± 0.008	10	0	375
174	14	0.068 ± 0.013	26	0	359
175	13	-0.003 ± 0.012	10	11	364
176	12	-0.003 ± 0.012	11	12	362

Node	Clade		Number of	Number of	Number of
number	size	$rQS \pm SE$	matches	mismatches	equivocal matches
177	7	0.013 ± 0.006	5	0	380
178	6	0.003 ± 0.006	3	2	380
179	2	0.008 ± 0.006	4	1	380
180	4	0.013 ± 0.006	5	0	380
181	3	0.008 ± 0.006	4	1	380
182	2	0.013 ± 0.006	5	0	380
183	5	0.021 ± 0.010	12	4	369
184	2	0.000 ± 0.007	4	4	377
185	3	0.016 ± 0.007	7	1	377
186	2	0.000 ± 0.007	4	4	377
187	162	0.135 ± 0.017	52	0	333
188	158	0.044 ± 0.010	17	0	368
189	156	0.044 ± 0.011	18	1	366
190	155	0.010 ± 0.006	5	1	379
191	153	0.049 ± 0.012	20	1	364
192	151	0.177 ± 0.022	77	9	299
193	111	0.039 ± 0.017	30	15	340
194	94	0.062 ± 0.021	44	20	321
195	4	-0.029 ± 0.012	6	17	362
196	3	0.042 ± 0.011	18	2	365
197	2	0.008 ± 0.005	3	0	382
198	3	0.008 ± 0.011	10	7	368
199	2	0.023 ± 0.009	11	2	372
200	41	0.062 ± 0.015	30	6	349
201	35	-0.026 ± 0.010	2	12	371
202	34	0.010 ± 0.016	20	16	349

Node	Clade		Number of	Number of	Number of
number	size	$rQS \pm SE$	matches	mismatches	equivocal matches
203	29	-0.026 ± 0.010	2	12	371
204	26	0.029 ± 0.010	13	2	370
205	23	0.042 ± 0.016	28	12	345
206	6	0.023 ± 0.009	11	2	372
207	5	0.023 ± 0.009	11	2	372
208	4	0.039 ± 0.011	17	2	366
209	3	0.034 ± 0.009	13	0	372
210	2	0.008 ± 0.005	3	0	382
211	17	0.016 ± 0.011	12	6	367
212	4	0.036 ± 0.011	16	2	367
213	13	0.008 ± 0.015	17	14	354
214	2	0.013 ± 0.009	9	4	372
215	11	0.036 ± 0.010	14	0	371
216	10	0.036 ± 0.010	14	0	371
217	9	0.026 ± 0.010	12	2	371
218	8	0.029 ± 0.010	13	2	370
219	5	0.008 ± 0.009	8	5	372
220	3	0.000 ± 0.011	9	9	367
221	2	0.005 ± 0.010	9	7	369
222	2	0.008 ± 0.005	3	0	382
223	3	0.008 ± 0.009	8	5	372
224	2	-0.003 ± 0.009	6	7	372
225	3	0.039 ± 0.010	15	0	370
226	3	0.003 ± 0.009	7	6	372
227	2	0.013 ± 0.009	9	4	372
228	5	0.078 ± 0.014	30	0	355

Node	Clade	0.0.07	Number of	Number of	Number of
number	size	$rQS \pm SE$	matches	mismatches	equivocal matches
229	3	0.049 ± 0.011	19	0	366
230	2	0.034 ± 0.011	16	3	366
231	2	0.039 ± 0.011	17	2	366
232	6	0.057 ± 0.012	22	0	363
233	4	0.023 ± 0.009	11	2	372
234	3	0.023 ± 0.009	11	2	372
235	2	0.034 ± 0.009	13	0	372
236	2	0.036 ± 0.010	15	1	369
237	2	0.010 ± 0.005	4	0	381
238	4	0.010 ± 0.005	4	0	381
239	2	0.010 ± 0.005	4	0	381
240	8	0.016 ± 0.009	9	3	373
241	2	0.005 ± 0.007	5	3	377
242	6	0.018 ± 0.009	9	2	374
243	5	0.010 ± 0.005	4	0	381
244	4	0.010 ± 0.005	4	0	381
245	3	0.010 ± 0.005	4	0	381
246	2	0.010 ± 0.005	4	0	381
247	2	0.008 ± 0.005	3	0	382
248	2	0.008 ± 0.009	7	4	374
249	8	0.005 ± 0.011	10	8	367
250	5	-0.003 ± 0.007	3	4	378
251	4	-0.003 ± 0.007	3	4	378
252	3	0.008 ± 0.005	3	0	382
253	2	0.008 ± 0.005	3	0	382
254	2	0.008 ± 0.005	3	0	382

Node	Clade		Number of	Number of	Number of
number	size	$rQS \pm SE$	matches	mismatches	equivocal matches
255	2	-0.013 ± 0.007	1	6	378
256	2	0.010 ± 0.005	4	0	381
257	14	0.057 ± 0.015	28	6	351
258	8	0.042 ± 0.011	17	1	367
259	7	0.042 ± 0.013	21	5	359
260	6	0.047 ± 0.011	18	0	367
261	5	0.008 ± 0.005	3	0	382
262	4	0.008 ± 0.005	3	0	382
263	2	0.008 ± 0.005	3	0	382
264	6	0.003 ± 0.006	3	2	380
265	5	0.016 ± 0.006	6	0	379
266	2	0.008 ± 0.005	3	0	382
267	3	0.008 ± 0.005	3	0	382
268	2	0.008 ± 0.005	3	0	382
269	23	0.042 ± 0.014	22	6	357
270	15	0.042 ± 0.013	20	4	361
271	10	0.023 ± 0.010	12	3	370
272	8	0.013 ± 0.010	10	5	370
273	6	0.005 ± 0.009	7	5	373
274	4	0.016 ± 0.009	9	3	373
275	3	0.003 ± 0.007	4	3	378
276	2	0.013 ± 0.007	6	1	378
277	2	-0.005 ± 0.005	1	3	381
278	2	-0.003 ± 0.007	3	4	378
279	2	-0.008 ± 0.007	2	5	378
280	5	0.023 ± 0.008	9	0	376

Node	Clade		Number of	Number of	Number of
number	size	$IQS \pm SE$	matches	mismatches	equivocal matches
281	2	-0.003 ± 0.008	4	5	376
282	3	0.008 ± 0.008	6	3	376
283	2	0.010 ± 0.006	5	1	379
284	8	-0.003 ± 0.012	11	12	362
285	2	0.003 ± 0.011	9	8	368
286	6	0.010 ± 0.005	4	0	381
287	2	0.010 ± 0.005	4	0	381
288	4	0.021 ± 0.007	8	0	377
289	3	0.010 ± 0.005	4	0	381
290	2	0.010 ± 0.005	4	0	381
291	14	-0.018 ± 0.011	6	13	366
292	12	-0.003 ± 0.007	3	4	378
293	11	0.013 ± 0.010	10	5	370
294	10	0.005 ± 0.011	10	8	367
295	9	0.003 ± 0.012	12	11	362
296	2	0.016 ± 0.006	6	0	379
297	6	0.055 ± 0.012	21	0	364
298	2	0.031 ± 0.009	12	0	373
299	2	0.013 ± 0.008	7	2	376
300	2	0.016 ± 0.006	6	0	379
301	2	0.031 ± 0.009	12	0	373
302	4	0.049 ± 0.018	33	14	338
303	3	0.091 ± 0.015	36	1	348
304	2	0.005 ± 0.004	2	0	383