803 research outputs found

    When all life counts in conservation

    Full text link
    © 2019 Society for Conservation Biology Conservation science involves the collection and analysis of data. These scientific practices emerge from values that shape who and what is counted. Currently, conservation data are filtered through a value system that considers native life the only appropriate subject of conservation concern. We examined how trends in species richness, distribution, and threats change when all wildlife count by adding so-called non-native and feral populations to the International Union for Conservation of Nature Red List and local species richness assessments. We focused on vertebrate populations with founding members taken into and out of Australia by humans (i.e., migrants). We identified 87 immigrant and 47 emigrant vertebrate species. Formal conservation accounts underestimated global ranges by an average of 30% for immigrants and 7% for emigrants; immigrations surpassed extinctions in Australia by 52 species; migrants were disproportionately threatened (33% of immigrants and 29% of emigrants were threatened or decreasing in their native ranges); and incorporating migrant populations into risk assessments reduced global threat statuses for 15 of 18 species. Australian policies defined most immigrants as pests (76%), and conservation was the most commonly stated motivation for targeting these species in killing programs (37% of immigrants). Inclusive biodiversity data open space for dialogue on the ethical and empirical assumptions underlying conservation science

    Evidence for a Positive Cosmological Constant from Flows of Galaxies and Distant Supernovae

    Full text link
    Recent observations of high-redshift supernovae seem to suggest that the global geometry of the Universe may be affected by a `cosmological constant', which acts to accelerate the expansion rate with time. But these data by themselves still permit an open universe of low mass density and no cosmological constant. Here we derive an independent constraint on the lower bound to the mass density, based on deviations of galaxy velocities from a smooth universal expansion. This constraint rules out a low-density open universe with a vanishing cosmological constant, and together the two favour a nearly flat universe in which the contributions from mass density and the cosmological constant are comparable. This type of universe, however, seems to require a degree of fine tuning of the initial conditions that is in apparent conflict with `common wisdom'.Comment: 8 pages, 1 figure. Slightly revised version. Letter to Natur

    A key to the past? Element ratios as environmental proxies in two Arctic bivalves

    Get PDF
    © 2016 Elsevier B.V. Understanding rapid climate change in the Arctic and its ecosystem implications requires more information on the environment at temporal resolutions and time-periods not available from instrumental records. Such information can be acquired through geochemical proxy records, but sub-annual records are rare. We analyzed shell material of bivalve mollusks (Serripes groenlandicus and Ciliatocardium ciliatum) placed on oceanographic moorings for one year in two Arctic fjords to assess the potential use of shell elemental ratios as environmental proxies. Li/Ca, Mg/Ca, Li/Mg, Li/Sr, Mn/Ca, Sr/Ca, Mo/Ca, and Ba/Ca were determined using Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometry. Combining data from moorings with previously derived sub-annual shell growth models allowed us to relate the elemental ratio patterns to oceanographic parameters (temperature, salinity, and fluorescence). Shell Ba/Ca profiles were characterized by abrupt peaks occurring 11 to 81 days after the phytoplankton bloom, as indicated by an index of seawater fluorescence. Li/Ca and Mg/Ca values exhibited significant logarithmic relationships with shell growth rate, indicated by marginal R2 values of 0.43 and 0.30, respectively. These ratios were also linearly related to temperature, with marginal R2 values of 0.15 and 0.17, respectively. Mn/Ca and Sr/Ca ratios exhibited variability among individuals and their temporal pattern was likely controlled by several unidentified factors. Mo/Ca patterns within the shells did not demonstrate correlations with any of the oceanographic parameters. Our results reflect complex relationships between elemental ratios and bivalve metabolism, methodological limitations, as well as contemporaneous environmental processes, suggesting that none of the studied elemental ratios can be used as unequivocal proxies of seawater temperature, salinity, paleoproductivity, or shell growth rate. Despite this, Ba/Ca and Li/Ca can be used as sub-annual temporal anchors in further studies because the variability of these elements was synchronized in each fjord

    A preliminary assessment on use of biochar as a soil additive for reducing the soil-to-plant update of cesium isotopes in radioactively contaminated environments

    Get PDF
    peer-reviewedA series of Kd tracer batch experiments were conducted to assess the absorptive-desorption properties of Biochar as a potential agent to selectively sequester labile soil Cs or otherwise help reduce the uptake of Cs isotopes into plants. A parallel experiment was conducted for strontium. Fine-grained fractionated Woodlands tree Biochar was found to have a relatively high affinity for Cs ions (Kd > 100) in comparison with untreated coral soil (Kd < 10) collected from the Marshall Islands. The Biochar material also contains an abundance of K (and Mg). These findings support a hypothesis that the addition of Biochar as a soil amendment may provide a simple yet effective method for reducing the soil-to-plant transfer of Cs isotopes in contaminated environments

    Holocentric Chromosomes of Luzula elegans Are Characterized by a Longitudinal Centromere Groove, Chromosome Bending, and a Terminal Nucleolus Organizer Region

    Get PDF
    The structure of holocentric chromosomes was analyzed in mitotic cells of Luzula elegans. Light and scanning electron microscopy observations provided evidence for the existence of a longitudinal groove along each sister chromatid. The centromere-specific histone H3 variant, CENH3, colocalized with this groove and with microtubule attachment sites. The terminal chromosomal regions were CENH3-negative. During metaphase to anaphase transition, L. elegans chromosomes typically curved to a sickle-like shape, a process that is likely to be influenced by the pulling forces of microtubules along the holocentric axis towards the corresponding microtubule organizing regions. A single pair of 45S rDNA sites, situated distal to Arabidopsis-telomere repeats, was observed at the terminal region of one chromosome pair. We suggest that the 45S rDNA position in distal centromere-free regions could be required to ensure chromosome stability. Copyright (C) 2011 S. Karger AG, Base

    Framework, principles and recommendations for utilising participatory methodologies in the co-creation and evaluation of public health interventions

    Get PDF
    Background: Due to the chronic disease burden on society, there is a need for preventive public health interventions to stimulate society towards a healthier lifestyle. To deal with the complex variability between individual lifestyles and settings, collaborating with end-users to develop interventions tailored to their unique circumstances has been suggested as a potential way to improve effectiveness and adherence. Co-creation of public health interventions using participatory methodologies has shown promise but lacks a framework to make this process systematic. The aim of this paper was to identify and set key principles and recommendations for systematically applying participatory methodologies to co-create and evaluate public health interventions. Methods: These principles and recommendations were derived using an iterative reflection process, combining key learning from published literature in addition to critical reflection on three case studies conducted by research groups in three European institutions, all of whom have expertise in co-creating public health interventions using different participatory methodologies. Results: Key principles and recommendations for using participatory methodologies in public health intervention co-creation are presented for the stages of: Planning (framing the aim of the study and identifying the appropriate sampling strategy); Conducting (defining the procedure, in addition to manifesting ownership); Evaluating (the process and the effectiveness) and Reporting (providing guidelines to report the findings). Three scaling models are proposed to demonstrate how to scale locally developed interventions to a population level. Conclusions: These recommendations aim to facilitate public health intervention co-creation and evaluation utilising participatory methodologies by ensuring the process is systematic and reproducible

    Evaporative evolution of a Na–Cl–NO(3)–K–Ca–SO(4)–Mg–Si brine at 95°C: Experiments and modeling relevant to Yucca Mountain, Nevada

    Get PDF
    A synthetic Topopah Spring Tuff water representative of one type of pore water at Yucca Mountain, NV was evaporated at 95°C in a series of experiments to determine the geochemical controls for brines that may form on, and possibly impact upon the long-term integrity of waste containers and drip shields at the designated high-level, nuclear-waste repository. Solution chemistry, condensed vapor chemistry, and precipitate mineralogy were used to identify important chemical divides and to validate geochemical calculations of evaporating water chemistry using a high temperature Pitzer thermodynamic database. The water evolved toward a complex "sulfate type" brine that contained about 45 mol % Na, 40 mol % Cl, 9 mol % NO(3), 5 mol % K, and less than 1 mol % each of SO(4), Ca, Mg, ∑CO(2)(aq), F, and Si. All measured ions in the condensed vapor phase were below detection limits. The mineral precipitates identified were halite, anhydrite, bassanite, niter, and nitratine. Trends in the solution composition and identification of CaSO(4 )solids suggest that fluorite, carbonate, sulfate, and magnesium-silicate precipitation control the aqueous solution composition of sulfate type waters by removing fluoride, calcium, and magnesium during the early stages of evaporation. In most cases, the high temperature Pitzer database, used by EQ3/6 geochemical code, sufficiently predicts water composition and mineral precipitation during evaporation. Predicted solution compositions are generally within a factor of 2 of the experimental values. The model predicts that sepiolite, bassanite, amorphous silica, calcite, halite, and brucite are the solubility controlling mineral phases

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    U.S. Physicians’ Views on Financing Options to Expand Health Insurance Coverage: A National Survey

    Get PDF
    Background: Physician opinion can influence the prospects for health care reform, yet there are few recent data on physician views on reform proposals or access to medical care in the United States. Objective: To assess physician views on financing options for expanding health care coverage and on access to health care. Design and Participants: Nationally representative mail survey conducted between March 2007 and October 2007 of U.S. physicians engaged in direct patient care. Measurements: Rated support for reform options including financial incentives to induce individuals to purchase health insurance and single-payer national health insurance; rated views of several dimensions of access to care. Main results: 1,675 of 3,300 physicians responded (50.8%). Only 9% of physicians preferred the current employer-based financing system. Forty-nine percent favored either tax incentives or penalties to encourage the purchase of medical insurance, and 42% preferred a government-run, taxpayer-financed single-payer national health insurance program. The majority of respondents believed that all Americans should receive needed medical care regardless of ability to pay (89%); 33% believed that the uninsured currently have access to needed care. Nearly one fifth of respondents (19.3%) believed that even the insured lack access to needed care. Views about access were independently associated with support for single-payer national health insurance. Conclusions: The vast majority of physicians surveyed supported a change in the health care financing system. While a plurality support the use of financial incentives, a substantial proportion support single payer national health insurance. These findings challenge the perception that fundamental restructuring of the U.S. health care financing system receives little acceptance by physicians
    corecore