20,354 research outputs found

    Gauss-Bonnet gravity, brane world models, and non-minimal coupling

    Get PDF
    We study the case of brane world models with an additional Gauss-Bonnet term in the presence of a bulk scalar field which interacts non-minimally with gravity, via a possible interaction term of the form 1/2ξRϕ2-1/2 \xi R \phi^2. The Einstein equations and the junction conditions on the brane are formulated, in the case of the bulk scalar field. Static solutions of this model are obtained by solving numerically the Einstein equations with the appropriate boundary conditions on the brane. Finally, we present graphically and comment these solutions for several values of the free parameters of the model.Comment: 13 pages,4 figures, published versio

    Extremal black holes, gravitational entropy and nonstationary metric fields

    Full text link
    We show that extremal black holes have zero entropy by pointing out a simple fact: they are time-independent throughout the spacetime and correspond to a single classical microstate. We show that non-extremal black holes, including the Schwarzschild black hole, contain a region hidden behind the event horizon where all their Killing vectors are spacelike. This region is nonstationary and the time tt labels a continuous set of classical microstates, the phase space [hab(t),Pab(t)][\,h_{ab}(t), P^{ab}(t)\,], where habh_{ab} is a three-metric induced on a spacelike hypersurface Σt\Sigma_t and PabP^{ab} is its momentum conjugate. We determine explicitly the phase space in the interior region of the Schwarzschild black hole. We identify its entropy as a measure of an outside observer's ignorance of the classical microstates in the interior since the parameter tt which labels the states lies anywhere between 0 and 2M. We provide numerical evidence from recent simulations of gravitational collapse in isotropic coordinates that the entropy of the Schwarzschild black hole stems from the region inside and near the event horizon where the metric fields are nonstationary; the rest of the spacetime, which is static, makes no contribution. Extremal black holes have an event horizon but in contrast to non-extremal black holes, their extended spacetimes do not possess a bifurcate Killing horizon. This is consistent with the fact that extremal black holes are time-independent and therefore have no distinct time-reverse.Comment: 12 pages, 2 figures. To appear in Class. and Quant. Gravity. Based on an essay selected for honorable mention in the 2010 gravity research foundation essay competitio

    Graviton localization and Newton's law for brane models with a non-minimally coupled bulk scalar field

    Full text link
    Brane world models with a non-minimally coupled bulk scalar field have been studied recently. In this paper we consider metric fluctuations around an arbitrary gravity-scalar background solution, and we show that the corresponding spectrum includes a localized zero mode which strongly depends on the profile of the background scalar field. For a special class of solutions, with a warp factor of the RS form, we solve the linearized Einstein equations, for a point-like mass source on the brane, by using the brane bending formalism. We see that general relativity on the brane is recovered only if we impose restrictions on the parameter space of the models under consideration.Comment: 17 pages, revised versio

    Cosmic Acceleration Data and Bulk-Brane Energy Exchange

    Full text link
    We consider a braneworld model with bulk-brane energy exchange. This allows for crossing of the w=-1 phantom divide line without introducing phantom energy with quantum instabilities. We use the latest SnIa data included in the Gold06 dataset to provide an estimate of the preferred parameter values of this braneworld model. We use three fitting approaches which provide best fit parameter values and hint towards a bulk energy component that behaves like relativistic matter which is propagating in the bulk and is moving at a speed v along the fifth dimension, while the bulk-brane energy exchange component corresponds to negative pressure and signifies energy flowing from the bulk into the brane. We find that the best fit effective equation of state parameter weffw_{eff} marginally crosses the phantom divide line w=-1. Thus, we have demonstrated both the ability of this class of braneworld models to provide crossing of the phantom divide and also that cosmological data hint towards natural values for the model parameters.Comment: 12 pages, 2 figures, added comments, references update

    A Naturally Minute Quantum Correction to the Cosmological Constant Descended from the Hierarchy

    Full text link
    We demonstrate that an extremely small but positive quantum correction, or the Casimir energy, to the cosmological constant can arise from a massive bulk fermion field in the Randall-Sundrum model. Specifically, a cosmological constant doubly descended from the Planck-electroweak hierarchy and as minute as the observed dark energy scale can be naturally achieved without fine-tuning of the bulk fermion mass. To ensure the stabilization of the system, we discuss two stabilization mechanisms under this setup. It is found that the Goldberger-Wise mechanism can be successfully introduced in the presence of a massive bulk fermion, without spoiling the smallness of the quantum correction.Comment: 5 page

    Abnormalities of the ventilatory equivalent for carbon dioxide in patients with chronic heart failure

    Get PDF
    Introduction. The relation between minute ventilation (VE) and carbon dioxide production (VCO2) can be characterised by the instantaneous ratio of ventilation to carbon dioxide production, the ventilatory equivalent for CO2 (VEqCO2). We hypothesised that the time taken to achieve the lowest VEqCO2 (time to VEqCO2 nadir) may be a prognostic marker in patients with chronic heart failure (CHF). Methods. Patients and healthy controls underwent a symptom-limited, cardiopulmonary exercise test (CPET) on a treadmill to volitional exhaustion. Results. 423 patients with CHF (mean age 63±12 years; 80% males) and 78 healthy controls (62% males; age 61±11 years) were recruited. Time to VEqCO2 nadir was shorter in patients than controls (327±204 s versus 514±187 s; P=0.0001). Univariable predictors of all-cause mortality included peak oxygen uptake (X 2 =53.0), VEqCO2 nadir (X 2 =47.9), and time to VEqCO2 nadir (X 2 =24.0). In an adjusted Cox multivariable proportional hazards model, peak oxygen uptake (X 2 =16.7) and VEqCO2 nadir (X 2 =17.9) were the most significant independent predictors of all-cause mortality. Conclusion. The time to VEqCO2 nadir was shorter in patients with CHF than in normal subjects and was a predictor of subsequent mortality. © 2012 Lee Ingle et al

    A study of the application of singular perturbation theory

    Get PDF
    A hierarchical real time algorithm for optimal three dimensional control of aircraft is described. Systematic methods are developed for real time computation of nonlinear feedback controls by means of singular perturbation theory. The results are applied to a six state, three control variable, point mass model of an F-4 aircraft. Nonlinear feedback laws are presented for computing the optimal control of throttle, bank angle, and angle of attack. Real Time capability is assessed on a TI 9900 microcomputer. The breakdown of the singular perturbation approximation near the terminal point is examined Continuation methods are examined to obtain exact optimal trajectories starting from the singular perturbation solutions

    A supersymmetric model of gamma ray bursts

    Full text link
    We propose a model for gamma ray bursts in which a star subject to a high level of fermion degeneracy undergoes a phase transition to a supersymmetric state. The burst is initiated by the transition of fermion pairs to sfermion pairs which, uninhibited by the Pauli exclusion principle, can drop to the ground state of minimum momentum through photon emission. The jet structure is attributed to the Bose statistics of sfermions whereby subsequent sfermion pairs are preferentially emitted into the same state (sfermion amplification by stimulated emission). Bremsstrahlung gamma rays tend to preserve the directional information of the sfermion momenta and are themselves enhanced by stimulated emission.Comment: published versio

    Mapping EK Draconis with PEPSI - Possible evidence for starspot penumbrae

    Full text link
    We present the first temperature surface map of EK Dra from very-high-resolution spectra obtained with the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope. Changes in spectral line profiles are inverted to a stellar surface temperature map using our iiMap code. The long-term photometric record is employed to compare our map with previously published maps. Four cool spots were reconstructed, but no polar spot was seen. The temperature difference to the photosphere of the spots is between 990 and 280K. Two spots are reconstructed with a typical solar morphology with an umbra and a penumbra. For the one isolated and relatively round spot (A), we determine an umbral temperature of 990K and a penumbral temperature of 180K below photospheric temperature. The umbra to photosphere intensity ratio of EK Dra is approximately only half of that of a comparison sunspot. A test inversion from degraded line profiles showed that the higher spectral resolution of PEPSI reconstructs the surface with a temperature difference that is on average 10% higher than before and with smaller surface areas by 10-20%. PEPSI is therefore better suited to detecting and characterising temperature inhomogeneities. With ten more years of photometry, we also refine the spot cycle period of EK Dra to 8.9±\pm0.2 years with a continuing long-term fading trend. The temperature morphology of spot A so far appears to show the best evidence for the existence of a solar-like penumbra for a starspot. We emphasise that it is more the non-capture of the true umbral contrast rather than the detection of the weak penumbra that is the limiting factor. The relatively small line broadening of EK Dra, together with the only moderately high spectral resolutions previously available, appear to be the main contributors to the lower-than-expected spot contrasts when comparing to the Sun.Comment: Accepted for A&

    Gravitational Wave Burst Source Direction Estimation using Time and Amplitude Information

    Get PDF
    In this article we study two problems that arise when using timing and amplitude estimates from a network of interferometers (IFOs) to evaluate the direction of an incident gravitational wave burst (GWB). First, we discuss an angular bias in the least squares timing-based approach that becomes increasingly relevant for moderate to low signal-to-noise ratios. We show how estimates of the arrival time uncertainties in each detector can be used to correct this bias. We also introduce a stand alone parameter estimation algorithm that can improve the arrival time estimation and provide root-sum-squared strain amplitude (hrss) values for each site. In the second part of the paper we discuss how to resolve the directional ambiguity that arises from observations in three non co-located interferometers between the true source location and its mirror image across the plane containing the detectors. We introduce a new, exact relationship among the hrss values at the three sites that, for sufficiently large signal amplitudes, determines the true source direction regardless of whether or not the signal is linearly polarized. Both the algorithm estimating arrival times, arrival time uncertainties, and hrss values and the directional follow-up can be applied to any set of gravitational wave candidates observed in a network of three non co-located interferometers. As a case study we test the methods on simulated waveforms embedded in simulations of the noise of the LIGO and Virgo detectors at design sensitivity.Comment: 10 pages, 14 figures, submitted to PR
    corecore