48 research outputs found

    Different tau species lead to heterogeneous tau pathology propagation and misfolding.

    Get PDF
    Tauopathies are a heterogeneous group of pathologies characterized by tau aggregation inside neurons. Most of them are sporadic but certain tauopathies rely on tau gene (MAPT) mutations. They particularly differ from one to another by their different neuropathological signatures e.g. lesion shapes, regions affected and molecular composition of aggregates. Six isoforms of tau exist, but they do not all co-aggregate in each tauopathy but rather have a unique signature for each one. In some tauopathies such as Alzheimer's disease (AD), tau protein aggregation follows stereotypical anatomical stages. Recent data suggest that this progression is due to an active process of tau protein propagation from neuron-to-neuron. We wondered how tau isoforms or mutations could influence the process of tau aggregation and tau propagation. In human neuropathological material, we found that MAPT mutations induce a faster misfolding compared to tau found in sporadic AD patients. In the rat brain, we observed cell-to-cell transfer of non-pathological tau species irrespective of the tested isoform or presence of a mutation. By contrast, we found that the species of tau impact the propagation of tau pathology markers such as hyperphosphorylation and misfolding. Indeed, misfolding and hyperphosphorylated tau proteins do not spread at the same rate when tau is mutated, or the isoform composition is modified. These results clearly argue for the existence of specific folding properties of tau depending on isoforms or mutations impacting the behavior of pathological tau species

    Magnetic Field Generation in Stars

    Get PDF
    Enormous progress has been made on observing stellar magnetism in stars from the main sequence through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence,in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Thus we maybe at the dawn of a new era of exciting discoveries in compact star magnetism driven by the opening of a new, non-electromagnetic observational window. We also review recent advances in the theory and computation of magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo theory. These advances offer insight into the action of stellar dynamos as well as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field generation in stars to appear in Space Science Reviews, Springe

    Learning from multimedia and hypermedia

    Get PDF
    Computer-based multimedia and hypermedia resources (e.g., the world wide web) have become one of the primary sources of academic information for a majority of pupils and students. In line with this expansion in the field of education, the scientific study of learning from multimedia and hypermedia has become a very active field of research. In this chapter we provide a short overview with regard to research on learning with multimedia and hypermedia. In two review sections, we describe the educational benefits of multiple representations and of learner control, as these are the two defining characteristics of hypermedia. In a third review section we describe recent scientific trends in the field of multimedia/hypermedia learning. In all three review sections we will point to relevant European work on multimedia/hypermedia carried out within the last 5 years, and often carried out within the Kaleidoscope Network of Excellence. According to the interdisciplinary nature of the field this work might come not only from psychology, but also from technology or pedagogy. Comparing the different research activities on multimedia and hypermedia that have dominated the international scientific discourse in the last decade reveals some important differences. Most important, a gap seems to exist between researchers mainly interested in a “serious” educational use of multimedia/ hypermedia and researchers mainly interested in “serious” experimental research on learning with multimedia/hypermedia. Recent discussions about the pros and cons of “design-based research” or “use-inspired basic research” can be seen as a direct consequence of an increasing awareness of the tensions within these two different cultures of research on education

    Report on Practice of Note-Rebuilding Support System

    No full text
    corecore