162 research outputs found

    Comparison of SAGE and classical multi-antenna algorithms for multipath mitigation in real-world environment

    Get PDF
    The performance of the Space Alternating Generalized Expectation Maximisation (SAGE) algorithm for multipath mitigation is assessed in this paper. Numerical simulations have already proven the potential of SAGE in navigation context, but practical aspects of the implementation of such a technique in a GNSS receiver are the topic for further investigation. In this paper, we will present the first results of SAGE implementation in a real world environmen

    Turnover and nestedness drive plant diversity benefits of organic farming from local to landscape scales

    Get PDF
    Biodiversity-benefits of organic farming have mostly been documented at the field scale. However, these benefits from organic farming to species diversity may not propagate to larger scales because variation in the management of different crop types and seminatural habitats in conventional farms might allow species to cope with intensive crop management. We studied flowering plant communities using a spatially replicated design in different habitats (cereal, ley and seminatural grasslands) in organic and conventional farms, distributed along a gradient in proportion of seminatural grasslands. We developed a novel method to compare the rates of species turnover within and between habitats, and between the total species pools in the two farming systems. We found that the intrahabitat species turnover did not differ between organic and conventional farms, but that organic farms had a significantly higher interhabitat turnover of flowering plant species compared with conventional ones. This was mainly driven by herbicide-sensitive species in cereal fields in organic farms, as these contained 2.5 times more species exclusive to cereal fields compared with conventional farms. The farm-scale species richness of flowering plants was higher in organic compared with conventional farms, but only in simple landscapes. At the interfarm level, we found that 36% of species were shared between the two farming systems, 37% were specific to organic farms whereas 27% were specific to conventional ones. Therefore, our results suggest that that both community nestedness and species turnover drive changes in species composition between the two farming systems. These large-scale shifts in species composition were driven by both species-specific herbicide and nitrogen sensitivity of plants. Our study demonstrates that organic farming should foster a diversity of flowering plant species from local to landscape scales, by promoting unique sets of arable-adapted species that are scarce in conventional systems. In terms of biodiversity conservation, our results call for promoting organic farming over large spatial extents, especially in simple landscapes, where such transitions would benefit plant diversity most.Peer reviewe

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Full text link
    Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population

    Autoantibodies against type I IFNs in patients with critical influenza pneumonia

    Full text link
    In an international cohort of 279 patients with hypoxemic influenza pneumonia, we identified 13 patients (4.6%) with autoantibodies neutralizing IFN-alpha and/or -omega, which were previously reported to underlie 15% cases of life-threatening COVID-19 pneumonia and one third of severe adverse reactions to live-attenuated yellow fever vaccine. Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-alpha 2 alone (five patients) or with IFN-omega (eight patients) from a cohort of 279 patients (4.7%) aged 6-73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-alpha 2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-omega. The patients' autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients 70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-alpha 2 and IFN-omega (OR = 11.7, P = 1.3 x 10(-5)), especially those <70 yr old (OR = 139.9, P = 3.1 x 10(-10)). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for similar to 5% of cases of life-threatening influenza pneumonia in patients <70 yr old

    Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children

    Full text link
    We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-alpha 2 in 10 patients: IFN-alpha 2 only in three, IFN-alpha 2 plus IFN-omega in five, and IFN-alpha 2, IFN-omega plus IFN-beta in two; IFN-omega only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-alpha 2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-omega in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-alpha 2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-. only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-omega and/or IFN-alpha 2

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    A new sensor array receiver for multipath mitigation in GNSS

    No full text
    The use of antenna array for multipaths mitigation in Global Navigation Satellite Systems (GNSS) is considered in this paper. Theoretical studies have shown that using the spatial sampling in combination with time and frequency dimensions can significantly reduce the final position estimation error. However, the lack of practical considerations is still an issue. Technological defaults are usually not taken into account in numerical simulations, and these defaults can seriously degrade the performances of the processing as they modify the amplitude and phase responses of the array. Moreover, implemented algorithms usually result from a trade off between the accuracy and the complexity. This paper aims at presenting two new tools based on antenna arrays for studying the GNSS multipaths mitigation. The first one is a new implementation of the well known Space Alternating Generalized Expectation Maximization algorithm (SAGE). By filtering the multipaths on the space, time and frequency domains, SAGE algorithms can strongly reduce the time-delay estimation error. Nevertheless, SAGE implementation requires high memory and computation capacities, and real time SAGE processing is still not possible. Simulation results show that with the same level of performance, the new implementation of SAGE can reduce the size of the signal and consequently, the memory and computation load requirements. In order to validate the simulation results, CNES and ELTA are developing a new reconfigurable 2×2 array GNSS receiver. Thus, this paper exhibits also the architecture and the specifications of this new array dedicated to offline signal processing

    Relationships among ecological traits of wild bee communities along gradients of habitat amount and fragmentation

    No full text
    Amount of semi-natural habitats (permanent grasslands, woodlands and hedgerows) and their level of ragmentation are among the main determinants of wild bee diversity in agricultural landscapes. However, their impact on the distribution of bee ecological traits has received little attention. In this study, we aimed to explore whether changes in the distribution of bee ecological traits along gradients of habitat amount and fragmentation were due to a direct effect of landscape context on multiple traits (‘response traits’) or to a correlation of response traits with other ecological traits not involved in the response of bee species to landscape context. In two study regions in southwest France and southeast Australia, we used a RLQ analysis (three-table ordination method) to link bee traits with habitat amount and fragment isolation measured at the landscape scale. We found that bee ecological traits shifted at the community-level in association with landscape gradients, whereas species-level associations among bee traits and phylogenetic clustering in bee communities were of only minor importance in determining such shifts. We found that traits such as body size and nest location were closely linked to habitat amount and fragmentation. We also observed regionally-specific relationships among ecological traits, suggesting that the regional species pool can play an important role in determining the response of bee communities to habitat amount and fragmentation. Our findings suggest that improved knowledge about how trait-based responses mediate the impact of landscapes on wild bee communities will allow better prediction and understanding of subsequent effects on ecosystem functioning
    corecore