126 research outputs found
Review of "Proteins of the Cerebrospinal Fluid" (2(nd )Edition) by Edward J. Thompson
This book on cerebrospinal fluid (CSF) proteins is primarily focused on immunoglobulins. The book was written as an extension of a meeting on multiple sclerosis to provide a more extensive consideration of the CSF
Identification of a novel biomarker candidate, a 4.8-kDa peptide fragment from a neurosecretory protein VGF precursor, by proteomic analysis of cerebrospinal fluid from children with acute encephalopathy using SELDI-TOF-MS
<p>Abstract</p> <p>Background</p> <p>Acute encephalopathy includes rapid deterioration and has a poor prognosis. Early intervention is essential to prevent progression of the disease and subsequent neurologic complications. However, in the acute period, true encephalopathy cannot easily be differentiated from febrile seizures, especially febrile seizures of the complex type. Thus, an early diagnostic marker has been sought in order to enable early intervention. The purpose of this study was to identify a novel marker candidate protein differentially expressed in the cerebrospinal fluid (CSF) of children with encephalopathy using proteomic analysis.</p> <p>Methods</p> <p>For detection of biomarkers, CSF samples were obtained from 13 children with acute encephalopathy and 42 children with febrile seizure. Mass spectral data were generated by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) technology, which is currently applied in many fields of biological and medical sciences. Diagnosis was made by at least two pediatric neurologists based on the clinical findings and routine examinations. All specimens were collected for diagnostic tests and the remaining portion of the specimens were used for the SELDI-TOF MS investigations.</p> <p>Results</p> <p>In experiment 1, CSF from patients with febrile seizures (n = 28), patients with encephalopathy (n = 8) (including influenza encephalopathy (n = 3), encephalopathy due to rotavirus (n = 1), human herpes virus 6 (n = 1)) were used for the SELDI analysis. In experiment 2, SELDI analysis was performed on CSF from a second set of febrile seizure patients (n = 14) and encephalopathy patients (n = 5). We found that the peak with an m/z of 4810 contributed the most to the separation of the two groups. After purification and identification of the 4.8-kDa protein, a 4.8-kDa proteolytic peptide fragment from the neurosecretory protein VGF precursor (VGF4.8) was identified as a novel biomarker for encephalopathy.</p> <p>Conclusions</p> <p>Expression of VGF4.8 has been reported to be decreased in pathologically degenerative changes such as Alzheimer's disease, amyotrophic lateral sclerosis (ALS), frontotemporal dementia, and encephalopathy. Thus, the VGF4.8 peptide might be a novel marker for degenerative brain conditions.</p
Affect, Relationality and the 'Problem of Personality'
This peer-reviewed journal article sets out an argument regarding the importance of genealogical work for understanding concepts such as affect and suggestion
New Technologies’ Promise to the Self and the Becoming of the Sacred: Insights from Georges Bataille’s Concept of Transgression
This article draws on Georges Bataille’s concept of transgression, a key element in Bataille’s theory of the sacred, to highlight structural implications of the way the self-empowerment ethos of new technologies suffuses the digital tracking culture. Pointing to the original conceptual stance of transgression, worked out against prohibition, I first argue that, beyond a critique of new technologies’ promise of self-empowerment as coming at the expense of an acknowledgement of the ultimate taboo—death—is the problem of the sanitizing of the tension between the crossing of the line of the symbolic taboo and prohibition; this undermines a “libidinal investment” towards the sacred, which is central in Bataille’s theory. Second, focussing on “eroticism”, since this embodies the emancipative potential of the Bataillean sacred, I argue that while a fear of eroticism marks out the digital technological realm, this is covered up by the blurring of boundaries between pleasure, fun and sex(iness) that currently governs our experience with technological devices
A chronic fatigue syndrome – related proteome in human cerebrospinal fluid
BACKGROUND: Chronic Fatigue Syndrome (CFS), Persian Gulf War Illness (PGI), and fibromyalgia are overlapping symptom complexes without objective markers or known pathophysiology. Neurological dysfunction is common. We assessed cerebrospinal fluid to find proteins that were differentially expressed in this CFS-spectrum of illnesses compared to control subjects. METHODS: Cerebrospinal fluid specimens from 10 CFS, 10 PGI, and 10 control subjects (50 μl/subject) were pooled into one sample per group (cohort 1). Cohort 2 of 12 control and 9 CFS subjects had their fluids (200 μl/subject) assessed individually. After trypsin digestion, peptides were analyzed by capillary chromatography, quadrupole-time-of-flight mass spectrometry, peptide sequencing, bioinformatic protein identification, and statistical analysis. RESULTS: Pooled CFS and PGI samples shared 20 proteins that were not detectable in the pooled control sample (cohort 1 CFS-related proteome). Multilogistic regression analysis (GLM) of cohort 2 detected 10 proteins that were shared by CFS individuals and the cohort 1 CFS-related proteome, but were not detected in control samples. Detection of ≥1 of a select set of 5 CFS-related proteins predicted CFS status with 80% concordance (logistic model). The proteins were α-1-macroglobulin, amyloid precursor-like protein 1, keratin 16, orosomucoid 2 and pigment epithelium-derived factor. Overall, 62 of 115 proteins were newly described. CONCLUSION: This pilot study detected an identical set of central nervous system, innate immune and amyloidogenic proteins in cerebrospinal fluids from two independent cohorts of subjects with overlapping CFS, PGI and fibromyalgia. Although syndrome names and definitions were different, the proteome and presumed pathological mechanism(s) may be shared
Identification and Validation of Novel Cerebrospinal Fluid Biomarkers for Staging Early Alzheimer's Disease
Ideally, disease modifying therapies for Alzheimer disease (AD) will be applied during the 'preclinical' stage (pathology present with cognition intact) before severe neuronal damage occurs, or upon recognizing very mild cognitive impairment. Developing and judiciously administering such therapies will require biomarker panels to identify early AD pathology, classify disease stage, monitor pathological progression, and predict cognitive decline. To discover such biomarkers, we measured AD-associated changes in the cerebrospinal fluid (CSF) proteome.CSF samples from individuals with mild AD (Clinical Dementia Rating [CDR] 1) (n = 24) and cognitively normal controls (CDR 0) (n = 24) were subjected to two-dimensional difference-in-gel electrophoresis. Within 119 differentially-abundant gel features, mass spectrometry (LC-MS/MS) identified 47 proteins. For validation, eleven proteins were re-evaluated by enzyme-linked immunosorbent assays (ELISA). Six of these assays (NrCAM, YKL-40, chromogranin A, carnosinase I, transthyretin, cystatin C) distinguished CDR 1 and CDR 0 groups and were subsequently applied (with tau, p-tau181 and Aβ42 ELISAs) to a larger independent cohort (n = 292) that included individuals with very mild dementia (CDR 0.5). Receiver-operating characteristic curve analyses using stepwise logistic regression yielded optimal biomarker combinations to distinguish CDR 0 from CDR>0 (tau, YKL-40, NrCAM) and CDR 1 from CDR<1 (tau, chromogranin A, carnosinase I) with areas under the curve of 0.90 (0.85-0.94 95% confidence interval [CI]) and 0.88 (0.81-0.94 CI), respectively.Four novel CSF biomarkers for AD (NrCAM, YKL-40, chromogranin A, carnosinase I) can improve the diagnostic accuracy of Aβ42 and tau. Together, these six markers describe six clinicopathological stages from cognitive normalcy to mild dementia, including stages defined by increased risk of cognitive decline. Such a panel might improve clinical trial efficiency by guiding subject enrollment and monitoring disease progression. Further studies will be required to validate this panel and evaluate its potential for distinguishing AD from other dementing conditions
TSG-6 is concentrated in the extracellular matrix of mouse cumulus oocyte complexes through hyaluronan and inter-alpha-inhibitor binding
During development of ovarian follicles in mammals, cumu-lus cells and the oocyte form a mucoelastic mass that detaches itself from peripheral granulosa cell layers upon an ovulatory surge. The integrity of this cumulus-oocyte complex (COC) relies on the cohesiveness of a hyaluronan (HA)-enriched extracellular matrix (ECM). We previously identified a serum glycoprotein, inter-alpha-inhibitor (IaI), that is critical in organizing and sta-bilizing this matrix. Following an ovulatory stimulus, IaI diffuses into the follicular fluid and becomes integrated in the ECM through its association with HA. TSG-6 (the secreted product of the tumor necrosis factor-stimulated gene 6), another HA bind-ing protein, forms a complex with IaI in synovial fluid. The pur-pose of this study was to investigate whether TSG-6 is involved in the ECM organization of COCs. Immunolocalization of TSG-6 and IaI in mouse COCs at different ovulatory stages was an-alyzed by immunofluorescence and laser confocal microscopy. IaI, TSG-6, and HA colocolized in the cumulus ECM. Western blot analyses were consistent with the presence of both TSG-6 and TSG-6/IaI complexes in ovulated COCs. These results sug-gest that TSG-6 has a structural role in COC matrix formation possibly mediating cross-linking of separate HA molecules through its binding to IaI. cumulus cells, follicle, granulosa cells, oocyte development, ovu-latio
- …