29 research outputs found

    State of the world’s plants and fungi 2020

    Get PDF
    Kew’s State of the World’s Plants and Fungi project provides assessments of our current knowledge of the diversity of plants and fungi on Earth, the global threats that they face, and the policies to safeguard them. Produced in conjunction with an international scientific symposium, Kew’s State of the World’s Plants and Fungi sets an important international standard from which we can annually track trends in the global status of plant and fungal diversity

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    The kinin B1 receptor contributes to the cardioprotective effect of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in mice

    No full text
    Recent studies have shown that inhibition of angiotensin-converting enzyme (ACE) or angiotensin II receptor causes up-regulation of the B1 receptor (B1R). Here we tested the hypothesis that activation of B1R partially contributes to the cardiac beneficial effect of ACE inhibitor (ACEi) and angiotensin II receptor blockers (ARB). B1R knockout mice (B1R-/-) and C57Bl/6J (wild-type controls, WT) were subjected to myocardial infarction (MI) by ligating the left anterior descending coronary artery. Three weeks after MI, each strain of mice was treated with vehicle, ACEi (ramipril, 2.5 mg/kg/day in drinking water) or ARB (valsartan, 40 mg/kg/day in drinking water) for 5 weeks. We found that 1) compared to WT mice, B1R-/- that underwent sham surgery had slightly but significantly increased LV diastolic dimension, LV mass and myocyte size, whereas SBP, cardiac function and collagen deposition did not differ between strains; 2) MI leads to LV hypertrophy, chamber dilatation and dysfunction similarly in both WT and B1R-/-; and 3) ACEi and ARB improved cardiac function and remodeling in both strains; however, these benefits were significantly diminished in B1R-/- mice. Our data suggest that kinins acting via the B1R participate in the cardioprotective effects of ACEi and ARB

    Exploratory analysis of human urine by LC-ESI-TOF MS after high intake of olive oil: understanding the metabolism of polyphenols

    No full text
    Olive oil polyphenols have important biological properties which closely depend on their bioavailability; it is, therefore, essential to understand how polyphenols are absorbed, metabolized, and eliminated from the body. An analytical method based on rapid-resolution liquid chromatography (RRLC) coupled with mass spectrometric detection with a time-of-flight analyzer (RRLC-ESI-TOF MS) has been developed for analysis of the main olive oil phenolic compounds and their metabolites in human urine. Urine samples from ten healthy volunteers were collected before and 2, 4, and 6 h after intake of 50 mL extra-virgin olive oil. The proposed method includes liquid-liquid extraction with ethyl acetate, which provides extraction recoveries of the phenolic compounds studied between 35 and 75% from spiked urine samples. Good repeatability was obtained-the relative standard deviations (RSDs) of peak areas in intra-day and inter-day studies were 4.3 and 6.5%, respectively. Statistical studies enabled us to discriminate between urine samples before and after intake, and facilitated the search for m/z values enabling this discrimination. Based on the very accurate mass information and the isotopic pattern provided by the TOF MS analyzer, together with other available information, ten of these biomarkers and more than 50 metabolites, obtained through phase I and phase II biotransformation reactions, were tentatively identified. Additionally, kinetic studies were conducted on the metabolites identified as possible biomarkers; for most of the compounds concentrations were maximum in the first two hours

    Exploratory analysis of human urine by LC-ESI-TOF MS after high intake of olive oil: understanding the metabolism of polyphenols

    No full text
    Olive oil polyphenols have important biological properties which closely depend on their bioavailability; it is, therefore, essential to understand how polyphenols are absorbed, metabolized, and eliminated from the body. An analytical method based on rapid-resolution liquid chromatography (RRLC) coupled with mass spectrometric detection with a time-of-flight analyzer (RRLC-ESI-TOF MS) has been developed for analysis of the main olive oil phenolic compounds and their metabolites in human urine. Urine samples from ten healthy volunteers were collected before and 2, 4, and 6 h after intake of 50 mL extra-virgin olive oil. The proposed method includes liquid-liquid extraction with ethyl acetate, which provides extraction recoveries of the phenolic compounds studied between 35 and 75% from spiked urine samples. Good repeatability was obtained-the relative standard deviations (RSDs) of peak areas in intra-day and inter-day studies were 4.3 and 6.5%, respectively. Statistical studies enabled us to discriminate between urine samples before and after intake, and facilitated the search for m/z values enabling this discrimination. Based on the very accurate mass information and the isotopic pattern provided by the TOF MS analyzer, together with other available information, ten of these biomarkers and more than 50 metabolites, obtained through phase I and phase II biotransformation reactions, were tentatively identified. Additionally, kinetic studies were conducted on the metabolites identified as possible biomarkers; for most of the compounds concentrations were maximum in the first two hours.Proteomic

    Role of the B1 kinin receptor in the regulation of cardiac function and remodeling after myocardial infarction

    No full text
    Kinins exert cardioprotective effects via 2 G-protein-coupled receptors, B1 and B2. Using B1 kinin receptor gene knockout mice (B1 -/-), we tested the hypotheses that the B1 receptor plays an important role in preservation of cardiac function, whereas lack of B1 may accelerate cardiac remodeling and dysfunction after myocardial infarction, and that B2 receptors may compensate for lack of B1, whereas blockade of B2 receptors in B1 -/- mice may cause further deterioration of cardiac function and remodeling. Female B1 -/- mice and wild-type controls (C57BL/6J, B1 -/+) underwent sham surgery or myocardial infarction and were treated with either vehicle or B 2-antagonist (icatibant, 500 μg/kg per day, subcutaneous) for 8 weeks. We found that in sham myocardial infarction, B1 -/- mice had a larger left ventricular diastolic chamber dimension both initially and at 4 to 8 weeks compared with B1 +/+. Left ventricular mass and myocyte size were also larger in B1 -/- with sham operation than in B1 +/+, although cardiac function did not differ between strains. After myocardial infarction, cardiac remodeling and function were similar in both strains, although B1 -/- mice tended to have lower blood pressure. Blockade of B2 receptors tended to worsen cardiac remodeling and dysfunction in B1 -/- but not in B1 -/-. These results may suggest that B 2 receptors play an important role in compensating for lack of B 1 receptors in mice with myocardial infarction. Dual blockade of both B1 and B2 eliminates this compensation, leading to further deterioration of cardiac dysfunction and remodeling after myocardial infarction
    corecore