8 research outputs found

    The Radial Propagation of Heat in Strongly Driven Non-Equilibrium Fusion Plasmas

    Get PDF
    Heat transport is studied in strongly heated fusion plasmas, far from thermodynamic equilibrium. The radial propagation of perturbations is studied using a technique based on the transfer entropy. Three different magnetic confinement devices are studied, and similar results are obtained. "Minor transport barriers" are detected that tend to form near rational magnetic surfaces, thought to be associated with zonal flows. Occasionally, heat transport "jumps" over these barriers, and this "jumping" behavior seems to increase in intensity when the heating power is raised, suggesting an explanation for the ubiquitous phenomenon of "power degradation" observed in magnetically confined plasmas. Reinterpreting the analysis results in terms of a continuous time random walk, "fast" and "slow" transport channels can be discerned. The cited results can partially be understood in the framework of a resistive Magneto-HydroDynamic model. The picture that emerges shows that plasma self-organization and competing transport mechanisms are essential ingredients for a fuller understanding of heat transport in fusion plasmas.Research sponsored in part by the Ministerio de Economía y Competitividad of Spain under Project No. ENE2015-68206-P and ENE2015-68265-P. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training program 2014-2018 and 2019-2020 under Grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission

    Obtaining statistics of cascading line outages spreading in an electric transmission network from standard utility data

    Get PDF
    We show how to use standard transmission line outage historical data to obtain the network topology in such a way that cascades of line outages can be easily located on the network. Then we obtain statistics quantifying how cascading outages typically spread on the network. Processing real outage data is fundamental for understanding cascading and for evaluating the validity of the many different models and simulations that have been proposed for cascading in power networks.This work was supported in part by NSF grant CPS-1135825. Paper no. TPWRS-01019-2015. We gratefully thank Bonneville Power Administration for making publicly available the outage data that made this paper possible. The analysis and any conclusions are strictly those of the authors and not of Bonneville Power Administratio

    Filaments in the edge confinement region of TJ-II

    Get PDF
    Autor colectivo: TJ-II TeamFloating potential measurements from two remote reciprocating probes in the plasma edge region of the TJ-II stellarator are analyzed using the transfer entropy, revealing the spatial dimensions and propagation properties of filamentary structures. The results are corroborated by performing simulations with a resistive MHD model and analyzing data from synthetic diagnostics. The transfer entropy captures the rotation of the filaments and allows the calculating of their rotation velocity. This deduced velocity was compared to the (known) poloidal velocity of the plasma and showed a relatively good agreement

    The role of magnetic islands in modifying long range temporal correlations of density fluctuations and local heat transport

    Get PDF
    This work explores the relation between magnetic islands, long range temporal correlations and heat transport. A low order rational surface (t = 3/2) was purposely scanned outward through an electron cyclotron resonance heated (ECRH) plasma in the TJ-II stellarator. Density turbulence and the poloidal flow velocity were characterized using a two channel Doppler reflectometer. Simultaneously, the ECRH power was modulated to characterize heat transport, using measurements from a 12 channel electron cyclotron emission diagnostic. A systematic variation of the poloidal velocity was found to be associated with the t = 3/2 rational surface. Near the rational surface, the Hurst exponent, quantifying the nature of long-range correlations, was reduced below 0.5 (indicating subdiffusion), while at radii smaller than that of the rational surface, it was found to be significantly enhanced (superdiffusion). In the latter region, heat transport was enhanced as well, thus establishing a link between density fluctuations and anomalous heat transport. The observed variation of the Hurst exponent was consistent with a magnetohydrodynamic turbulence simulation

    Overview of recent TJ-II stellarator results

    Get PDF
    The main results obtained in the TJ-II stellarator in the last two years are reported. The most important topics investigated have been modelling and validation of impurity transport, validation of gyrokinetic simulations, turbulence characterisation, effect of magnetic configuration on transport, fuelling with pellet injection, fast particles and liquid metal plasma facing components. As regards impurity transport research, a number of working lines exploring several recently discovered effects have been developed: the effect of tangential drifts on stellarator neoclassical transport, the impurity flux driven by electric fields tangent to magnetic surfaces and attempts of experimental validation with Doppler reflectometry of the variation of the radial electric field on the flux surface. Concerning gyrokinetic simulations, two validation activities have been performed, the comparison with measurements of zonal flow relaxation in pellet-induced fast transients and the comparison with experimental poloidal variation of fluctuations amplitude. The impact of radial electric fields on turbulence spreading in the edge and scrape-off layer has been also experimentally characterized using a 2D Langmuir probe array. Another remarkable piece of work has been the investigation of the radial propagation of small temperature perturbations using transfer entropy. Research on the physics and modelling of plasma core fuelling with pellet and tracer-encapsulated solid-pellet injection has produced also relevant results. Neutral beam injection driven Alfvénic activity and its possible control by electron cyclotron current drive has been examined as well in TJ-II. Finally, recent results on alternative plasma facing components based on liquid metals are also presentedThis work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under Grant Agreement No. 633053. It has been partially funded by the Ministerio de Ciencia, Inovación y Universidades of Spain under projects ENE2013-48109-P, ENE2015-70142-P and FIS2017-88892-P. It has also received funds from the Spanish Government via mobility grant PRX17/00425. The authors thankfully acknowledge the computer resources at MareNostrum and the technical support provided by the Barcelona S.C. It has been supported as well by The Science and Technology Center in Ukraine (STCU), Project P-507F

    Width and rugosity of the topological plasma flow structures and their relation to the radial flights of particle tracers

    No full text
    An analysis of the distributions of the width and rugosity of topological plasma flow structures is presented for some resistive pressure-gradient-driven turbulence results. The distributions of the radial excursions of particle tracers during trappings are compared with those of the width and rugosity of the flow structures.This research was sponsored by DGICYT (Dirección General de Investigación Científica y Técnica) of Spain under Project No. ENE2012-38620-C02-02.Publicad

    The interplay of network structure and dispatch solutions in power grid cascading failures

    Get PDF
    For a given minimum cost of the electricity dispatch, multiple equivalent dispatch solutions may exist. We explore the sensitivity of networks to these dispatch solutions and their impact on the vulnerability of the network to cascading failure blackouts. It is shown that, depending on the heterogeneity of the network structure, the blackout statistics can be sensitive to the dispatch solution chosen, with the clustering coefficient of the network being a key ingredient. We also investigate mechanisms or configurations that decrease discrepancies that can occur between the different dispatch solutions.The authors want to thank the reviewer 1 of the manuscript for proposing the second choice in Section V: randomly perturb slightly the generator costs in order to destroy the degeneracy. This research was sponsored by Ministerio de Economía y Competitividad of Spain under Project Nos. ENE2012-31753, ENE2012-33219, and ENE2015-68265-P. Simulations have been run in the supercomputer cluster Uranus located at Universidad Carlos III de Madrid (Spain), funded by the Spanish Government via the National Project Nos. UNC313-4E-2361, ENE2012-33219 and ENE2012-31753. One of the authors (J.M.R.B.) acknowledges useful interactions with members of the research network Avalanchas en biofsica, geofsica, materiales y plasmas, funded by the Spanish Project No. MAT2015-69777-REDT

    Rational surfaces, flows and radial structure in the TJ-II stellarator

    Get PDF
    In this work, we report on the results obtained by measuring several turbulent quantities well inside the plasma edge by means of a Langmuir probe during dynamical rotational transform scans in the TJ-II stellarator, while applying a radial electric field to the edge plasma using a biasing probe. By calculating the intermittence parameter from floating potential measurements, we are able to identify a major low order rational surface and hence relate the probe measurements to the local value of the rotational transform. Based on the former, we are able to show that the poloidal plasma velocity (and hence radial electric field) has a significant radial structure that is clearly related to the rotational transform profile and in particular the lowest order rational surfaces in the range studied. The poloidal velocity is also affected by the edge biasing. The particle flux was also found to exhibit a radial pattern, as did the flow shear suppression term wExB1, but the relation of the former to the low-order rational surfaces was less clear. We surmise that this lack of direct correspondence is due to an unknown term in the turbulence evolution equation: the instability growth rate, y. We make use of a reduced Magnetohydrodynamic turbulence model to interpret the results. Overall, a picture is obtained in which the plasma self-organizes towards a state with a clear radial pattern of the radial electric field, in line with expectations from some numerical studies describing the spontaneous formation of an E x B staircase, consisting of alternating layers with fast and slow radial transport. In this state, the radial profiles of various quantities (density, temperature, pressure) will not be smooth.Research sponsored in part by the Ministerio de Ciencia e Innovación of Spain under Project Nos. PID2019-110734RB-I00 and PID2021-124883NB-I00. This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No. 101052200 EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them. B A C gratefully acknowledges support for the research from the DOE office of Fusion Energy under U.S. Department of Energy Contract No. DE-SC0018076
    corecore