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Abstract: Heat transport is studied in strongly heated fusion plasmas, far from thermodynamic
equilibrium. The radial propagation of perturbations is studied using a technique based on the
transfer entropy. Three different magnetic confinement devices are studied, and similar results
are obtained. “Minor transport barriers” are detected that tend to form near rational magnetic
surfaces, thought to be associated with zonal flows. Occasionally, heat transport “jumps” over these
barriers, and this “jumping” behavior seems to increase in intensity when the heating power is raised,
suggesting an explanation for the ubiquitous phenomenon of “power degradation” observed in
magnetically confined plasmas. Reinterpreting the analysis results in terms of a continuous time
random walk, “fast” and “slow” transport channels can be discerned. The cited results can partially
be understood in the framework of a resistive Magneto-HydroDynamic model. The picture that
emerges shows that plasma self-organization and competing transport mechanisms are essential
ingredients for a fuller understanding of heat transport in fusion plasmas.

Keywords: magnetic confinement fusion; turbulence; heat transport

1. Introduction

The initial goal of fusion research is to design a system that sustains fusion reactions in a safe
manner on Earth, which is a necessary first step towards the development of a fusion reactor, potentially
a nearly inexhaustible power source for humankind, free from the pernicious greenhouse effect.
Currently, one of the most promising approaches is magnetic confinement, in which the ionized gas
or plasma is bound to a strong magnetic field. To avoid end losses, the field lines are bent back
on themselves, leading to the typical doughnut-shaped devices called tokamaks and stellarators.
The choice of gas is usually a mixture of Deuterium and Tritium, as this combination is easiest to
ignite. To achieve sustained fusion reactions, the parameters of the plasma must fulfill the Lawson
criterion: nTτ > θ, where n is the particle density, T the temperature, τ the confinement time, and θ

a threshold value [1].
To comply with this requirement in the core region of the plasma, the plasma is heated and

fueled by various methods. Without entering into details, we note that temperatures achieved in the
core of present-day fusion devices range from about 1000 to several times 10,000 eV, corresponding
to equivalent temperatures of 107–108 K. Given such extreme core temperatures, along with the
requirement that the walls surrounding the plasma must be kept below the melting temperature of
the corresponding materials, it is not unreasonable to state that the temperature gradients created
in fusion-grade plasmas are among the highest achieved anywhere on Earth. Hence, the system as
a whole is necessarily very far from thermodynamic equilibrium, and standard approaches to study
the transport of particles and heat in the plasma must be used with great caution.
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Unsurprisingly, the steep gradients, providing an abundance of free energy, trigger the growth
of many instabilities, eventually leading to a strongly turbulent state. However, this turbulence is
not isotropic, due to the interaction between the dominant confining magnetic field and the ionized
plasma, and large-scale coherent structures (known as “zonal flows”, analogous to the bands that
form in the atmosphere of Jupiter [2]) tend to form spontaneously, which tame the turbulence
somewhat. The ensuing complex multi-scale interactions between turbulence and the large-scale
structures often leads to a situation best described as a self-organized state. Due to the existence of
thresholds for the triggering of instabilities, it has been surmised that fusion-grade plasmas are, in fact,
Self-Organized Critical (SOC) systems, and some evidence has been presented that appears to confirm
this conjecture [3].

Since the start of fusion development in the 1950s, progress towards raising the achieved values
of the parameters of the Lawson criterion has been steady and rather impressive [4]. However,
one issue has kept the fusion community from achieving even higher rates of progress: “power
degradation”. Power degradation is the phenomenon whereby the radial outward transport of heat
increases more than linearly with the applied input heating power, thus reducing the efficiency of
putative fusion power systems significantly. Of course, considering that the system is non-linear and
far from equilibrium, it would be somewhat naive to expect this power scaling to be linear. A full
understanding of the mechanisms underlying this phenomenon has so far eluded the community.

In the present work, we will address this issue from the novel viewpoint offered by an analysis
technique that was recently introduced in the field of information theory: the transfer entropy.
This paper is organized as follows. In Section 2, we describe the diagnostic method and the analysis
technique used and show a few highlights from the analysis of data from the TJ-I and W7-X stellarators.
In Section 3, we show results from the JET tokamak and proceed to analyze these results in more detail,
making estimates of “persistency” and an effective diffusion coefficient and interpreting the results in
terms of a Continuous Time Random Walk (CTRW). We then discuss this interpretation in light of the
simulations of plasma turbulence, which provide some understanding of the reported observations.
In Section 4, we discuss our results in the framework of earlier studies and their significance for the
power degradation issue. Finally, in Section 5, we summarize our results, which suggest the existence
of minor transport barriers and fast and slow heat transport channels.

2. Experiments and Methods

Generally speaking, turbulence in fusion plasmas is not easy to study due to the fact that local
measurements in the interior of the plasma are difficult to perform. For example, due to the high
temperature of the plasma, inserting physical probes is often unpractical and even undesirable due to
the induced perturbations. Other measurement systems yield line-integral rather than local quantities
(as is the case with some types of electromagnetic emissions from the plasma), generally not very
suited to the analysis of turbulence, or only achieve low sampling rates, insufficient to follow the rapid
evolution of turbulence in detail (such as the scattering of laser light known as Thomson scattering).
Nevertheless, some local and fast measurements are possible. Here, we will focus on a technique
known as Electron Cyclotron Emission (ECE).

ECE is a technique developed in the early days of plasma research and is based on a simple
physical principle. In the strongly magnetized and highly ionized plasma, electrons gyrate around the
field lines with a frequency ωc = eB/me and emit radiation at this frequency and higher harmonics.
Consequently, the radiation frequency is related to the magnetic field. If the spatial variation of the
magnetic field is known, the origin of the emitted radiation can be deduced with good precision, subject
to some conditions. The intensity of the detected radiation is directly related to the electron temperature
Te, again subject to some conditions [5]. Therefore, the measurement of ECE radiation provides a means
to study the evolution of the local electron temperature. By measuring at various emission frequencies
simultaneously, one may obtain this information at various locations inside the plasma, which is useful
to study both the time-averaged temperature profile and the evolution and propagation of temperature
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perturbations along the measurement chord. Due to these interesting properties of ECE diagnostics,
most present-day magnetic confinement devices are fitted with such systems [6].

To probe the transport properties of a system, it is customary to introduce a small perturbation
and observe its propagation. The velocity and spreading of the propagating perturbation can then be
related to the convection and diffusion coefficients of the system. However, strongly driven fusion
plasmas, far from equilibrium, are typically pervaded by many instabilities and noise. Consequently,
it is usually not feasible to track individual perturbations, and a statistical approach is needed.

In recent work, we have found that a technique based on ideas from the field of information
theory, the transfer entropy, offers a robust way to address this problem [7]. This nonlinear technique
measures the “information transfer” or causal relation between two time series. More specifically,
the transfer entropy between discretely sampled signals y(ti) and x(ti) quantifies the number of bits
by which the prediction of the next sample of signal x can be improved by using the time history of
not only the signal x itself, but also that of signal y.

In this work, we use a simplified version of the transfer entropy:

TY→X = ∑ p(xn+1, xn−k, yn−k) log2
p(xn+1|xn−k, yn−k)

p(xn+1|xn−k)
. (1)

Here, p(a|b) is the probability distribution of a conditional on b, p(a|b) = p(a, b)/p(b).
The probability distributions p(a, b, c, . . . ) are constructed using m bins for each argument,
i.e., the object p(a, b, c, . . . ) has md bins, where d is the dimension (number of arguments) of p. The sum
in Equation (1) runs over the corresponding discrete bins. The number k can be converted to a “time lag”
by multiplying it by the sampling rate. The construction of the probability distributions is done using
“course graining”, i.e., a low number of bins (here, m = 3), to obtain statistically significant results.
For more information on the technique, please refer to [8]. The value of the transfer entropy TY→X,
expressed in bits, can be compared with the total bit range, log2 m, equal to the maximum possible value
of TY→X , to help decide whether the transfer entropy is significant or not. The statistical significance
of the transfer entropy can be estimated by calculating TY→X for two random (noise) signals [9].

The Transfer Entropy (TE) has proven useful for the study of heat transport in stellarators [10,11].
Due to some remarkable properties, the TE is a powerful technique that provides unprecedented
radial detail. First, it is directional, acting as a filter that preferentially selects information components
related to (directional) propagation. Second, unlike linear tools such as the cross-correlation or the
conditional average, it does not depend on the temporal waveform or even the amplitude of the
fluctuations, but merely on the time lag between x and y. A comparison between this technique and
the cross-correlation was made in previous work [11], and it was concluded that the TE is an exquisitely
sensitive tool to study the propagation of perturbations in highly non-linear systems (such as fusion
plasmas), in which perturbations tend to be deformed or change shape quickly as they propagate.

The TE is calculated between two signals, in this case between data measured by an ECE channel
at a reference position rref (Y in Equation (1)) and data from an ECE channel at another position,
r (X in Equation (1)).

Figure 1 shows an example from the TJ-II stellarator (major radius R0 = 1.5 m) [12], a machine
characterized, among other things, by low magnetic shear. The ECE reference channel is taken at
ρref ' −0.07, and the other ECE channels are distributed along the minor radius −1 ≤ ρ ≤ 1.
Here, ρ = 0 corresponds to the magnetic axis of the torus, while |ρ| = |r/a| = 1 corresponds to the
minor radius of the torus. By convention, ECE channels with a negative ρ coordinate (the locations of
which are indicated in the figure by white circles) are located on the high field side of the magnetic axis.

The two panels in this figure (a and b) correspond to plasmas with a very different level of
electron cyclotron heating power, as indicated in the caption. Comparing the low and high power
cases shown in the figure, one observes a relatively smooth “plume” of propagating perturbations in
the low-power case, propagating outward from ρ = ρref. The main body of the plume occurs in the
range −0.35 < ρ < −0.07, although a rather weak continuation of the plume reaches about ρ ' −0.55,
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where some stagnation may be visible. This situation would be roughly consistent with “normal”
diffusive propagation. However, in the high-power case, the plume clearly stagnates at ρ ' −0.35,
developing a long horizontal “tail”; yet, for τ ' 0.2 ms, a second propagation branch appears at
ρ ' −0.55, with an amplitude comparable to or greater than the first branch. Note that this response
occurs without any detectable response at ρ ' −0.45, so that the perturbations seem to have “jumped
over” this intermediate position. The perturbations at ρ ' −0.55 have a stronger causal link to ρref
(higher value of TE) than in the low power case. The stronger causal response at ρ ' −0.55 may
be related to power degradation, as perturbations seem to be better able to reach this position and
influence turbulence there, possibly implying a more intense radial transport from ρref to ρ ' −0.55 in
the high power case.
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Figure 1. Examples of transfer entropy calculated from Electron Cyclotron Emission (ECE) data
taken at the TJ-II stellarator, using ρref ' −0.07, at (a) PECRH = 205 kW and (b) PECRH = 603 kW.
The color scale indicates the value of T. ECE channel positions are indicated with white circles.
The approximate location of some major rational surfaces is indicated by horizontal dashed lines;
the line labels specify the corresponding rotational transform of the magnetic field, n/m (toroidal per
poloidal turns). Figure reproduced from [13].
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Figure 2 shows similar results from a discharge of the W7-X stellarator (major radius
R0 = 5.5 m) [14], also with low magnetic shear, but with a size significantly exceeding that of TJ-II.
The number of available ECE channels (again indicated by white dots) is much larger here. Note that
the convention regarding the radial coordinate, |ρ| = |r/a|, is reversed from TJ-II: here, negative
values of ρ correspond to the low field side of the plasma. Due to issues related to data contamination,
we only consider data in the range 0 < ρ < 0.85. Comparing the low and high ECRH power phases,
one observes that they have in common that some perturbations propagate outward relatively slowly
to the 4/5 rational surface, which acts as a “trapping zone” for these perturbations. In the high
power phase, there is an additional branch of radial propagation, faster and more intense (in terms of
information transfer), reaching the 9/11 rational surface.
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Figure 2. Transfer entropy calculated from ECE data taken at the W7-X stellarator, at (a) PECRH ' 2.0
MW and (b) PECRH ' 0.6 MW. The color scale indicates the value of T. Radial propagation is indicated
with thick dashed lines. Figure reproduced from [11].

We would like to point out the similarity between Figures 1 and 2. Both show the existence of
a clear outward propagating “plume” of “information” from the reference position, ρref. This “plume”
has a tendency to stagnate near specific low order rational surfaces, producing horizontally extended
structures in the figures. On the other hand, occasionally, especially at high power, information is seen
to “arrive” at outward positions without having “passed through” positions further inside, giving
the impression of having “jumped over” intermediate positions. In the following, we will further
investigate this remarkable phenomenology using a different set of techniques.

3. Analysis

In this section, we will analyze high-resolution ECE data from the JET tokamak (major radius
R0 ' 2.96 m) [15]. JET discharges are usually characterized by sawtooth activity in the core region
(reconnection events associated with the q = 1 rational surface). These events produce a rapid expulsion
of heat from the core, and the resulting heat pulses can be analyzed to obtain information about heat
transport [16–18]. In Figure 3, a typical TE graph is shown for Rref = 3.30 m, versus time lag and the R
value of the other ECE channels. The R range is chosen outside the q = 1 surface, in order to allow
tracking the propagation of the heat pulses caused by the sawtooth crashes. Different from the results
shown in Figures 1 and 2, here, the radius indicated on the ordinate of the graph is the major radius,
rather than the normalized minor radius. The reader should be aware that the magnetic axis or plasma
center is typically located near the major radius of the torus, R0 ' 2.96 m, while the plasma edge is
located near R ' 3.85 m. This example graph shows that overall transport is outward, as indicated by
the white dashed line. The velocity of this propagation, given by the slope of this line, is consistent
with the typical heat transport coefficients measured in the JET tokamak using other techniques [19].
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Figure 3. Transfer entropy for JET discharge 82,292. Rref = 3.30. The color bar indicates the value
of T. White circles indicate the locations of ECE channels. To emphasize the shape of the high TE
region, a contour at T = 0.08 is shown (black line). The white dashed line indicates the overall outward
propagation. White arrows indicate “trapping regions” (see the text). Figure reproduced from [15].

3.1. Radial Modulation of the TE

We draw attention to the fact that the TE shown in Figure 3 is modulated radially. There are
well-defined radial zones where the distribution is broader horizontally than elsewhere, as indicated
by the white arrows. As before, we interpret these regions as “trapping regions”, where outward
transport is delayed and heat tends to accumulate. Likewise, there are radial “dips” where the TE is
significantly lower. In the framework of sheared flow models, “minor transport barriers” are regions
where the zonal flow is high and turbulence is suppressed (fully or partially); these regions would
correspond to the observed “dips”. The “trapping regions”, however, are zones in-between the minor
transport barriers, where turbulence is not suppressed, but turbulent vortices exist that tend to trap
the propagating heat.

3.2. Persistence of Minima

In order to quantify the location of the observed radial minima of the TE, we calculate the average
of the TE over the available time lags (or up to a specific maximum time lag), 〈T〉. Figure 4 shows
an example of this curve for various choices of reference radius. It is observed that the locations
of some minima of 〈T〉 do not depend on the choice of reference radius, within a reasonable range,
but rather are associated with the magnetic configuration (cf. the minimum indicated by the vertical
dashed line in Figure 4). The minimum occurring at the reference radius itself has a trivial origin and
should be ignored. The location of minima in the graphs of 〈T〉 can be subjected to a statistical analysis,
based on the set of all available Rref values for a given discharge. To do so, we count how often each
local minimum occurs with respect to the total number of reference radii Rref studied and express it as
a percentage. This number is defined as the “persistence” of any given local minimum.
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Figure 4. Time average of TE over all time lags 0 ≤ τ ≤ 0.2 s for JET discharge 82,292, for a few
reference values R = Rref, as indicated in the legend. Figure reproduced from [15].

3.3. Effective Diffusivity

It is also possible to estimate an effective diffusion coefficient from the radial propagation of
information. Calculating an effective diffusion coefficient is important, as it allows contrasting and
comparing the results from this method to traditional estimates of heat transport and is helpful to
elucidate the power degradation issue mentioned in the Introduction. Nevertheless, it should be borne
in mind that the calculation of an effective diffusion coefficient does not imply that transport is actually
diffusive in nature; in fact, as we have argued above, it is unlikely to be so. For each available ECE
channel, one can estimate the mean time delay 〈τ〉 from:

〈τ(R)〉 =
∫

τT(R, τ)dτ∫
T(R, τ)dτ

(2)

Figure 5 shows an example corresponding to the same case as Figure 4. Using an appropriate
reconstruction of the magnetic equilibrium [20], we can convert the ECE measurement location R to
a minor radius value r = a

√
ΨN , where ΨN is the toroidal magnetic flux, normalized such that it

equals zero at the magnetic axis and one at the plasma edge (or separatrix).
Then, an effective diffusion coefficient can be defined by:

〈D〉 = c · (r− r0)
2

〈τ(r)〉 (3)

The coefficient c appearing in this equation is set at c = 1
8 , corresponding to the “time to peak”

estimate [21], although slightly different values are sometimes also used in literature [16]. Note that
this estimate of the effective diffusion coefficient is not very accurate, for two reasons. First, it is
not defined for r = r0 as both the numerator and the denominator of the expression tend to zero,
and the radial behavior tends to be dominated by the numerator (r− r0)

2 for small values of r− r0.
Therefore, the extracted diffusion coefficient should not be taken too seriously in the region near the
reference position. Second, it is defined exclusively on the basis of the time (or phase) delay, whereas
a proper recovery of the underlying effective diffusion coefficient would require information about the
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perturbation amplitude as well. Nevertheless, it may serve as a means to visualize the radial variation
of transport, and in this paper, we will use it only for this purpose.

3.4

3.5

3.6

3.7

3.8

0.022 0.024 0.026 0.028 0.03 0.032

R
 (m

)

Averaged lag time (s)

Figure 5. Example graph of position R versus the mean lag time 〈τ〉, showing radial variation.

The resulting value 〈D〉 is the mean diffusivity over the interval [r0, r]. To extract the local value,
we consider that this mean diffusivity is calculated as follows from the local diffusivity:

〈D〉N =
1

rN − r0

N−1

∑
i=0

(ri+1 − ri)D(ri) (4)

so that:
(rN − r0)〈D〉N − (rN−1 − r0)〈D〉N−1 = (rN − rN−1)D(rN−1), (5)

from which the local effective diffusivity D(rN−1) follows. Of course, when 〈D〉 does not depend
strongly on r, the mean diffusivity and the local diffusivity are nearly the same.

Next, we attempt to correct for the unphysical fact that D tends to zero at r = r0. To do so,
we first compute D0(r), i.e., the local effective diffusion coefficient using r0 ' 0. Then, we estimate the
corrected local effective diffusion coefficient at different reference radii r0 using:

Dcorr
r0

(r) = D0(r0) + Dr0(r) (6)

This correction, while still not perfect, should bring the estimated value of the diffusion
coefficient closer to the “true” diffusion coefficient, by partially correcting for the unphysical effect
mentioned above.

Figure 6b shows an example of the corrected effective diffusion coefficient Dcorr, along with the
location of minima of 〈T〉, indicated by bars proportional to the degree of persistence. It may be
observed that structures in the Dcorr profile are often correlated with persistent minima, suggesting
that these minima indeed act as minor transport barriers, affecting radial heat transport. Figure 6a also
shows the corresponding profile of the safety factor, q = m/n (from a reconstruction of the magnetic
equilibrium by the program EFIT, using magnetics alone; the sawteeth inversion radius, determined
from the Te time traces, is located at r ' 0.47, close to the q = 1 surface). It can be seen, for example,
that the barrier at r ' 0.73 is not far from the point where q = 3/2, although uncertainties in the
q-profile do not allow one to make a definite identification.
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Figure 6. (a) Profile of the safety factor, q, averaged over the time window of interest (9–12 s) and
(b) corrected effective diffusion and persistence.

3.4. Propagation Paths

Note that Figure 3 shows two branches of propagation. The “slow branch” is indicated by the
white dashed line. However, there appears to be a “fast branch”, visible for 3.55 < R < 3.74 m at lag
times τ < 0.01 s. In this section, we investigate this issue further.

The transfer entropy T(rref, r, τ) specifies the improvement of the prediction of the next sample of
the signal x(r, t), based on the knowledge of x(rref, t− τ). Hence, it seems reasonable to assume that
some kind of “particles” carry this information from rref to r, taking a time τ to take this step. In the
present context, the “particles” would represent heat, rather than actual particles, of course. The latter
description is reminiscent of the continuous time random walk [22].

If one interprets the transfer entropy in this framework, the transfer entropy can be associated
with the probability distribution for taking a step ∆r = r − rref in time τ, simply by normalizing
Trref(∆r, τ) = T(rref, r, τ) by a factor N, so that the resulting distribution prref(∆r, τ) = Trref(∆r, τ)/N
is a probability distribution such that its integral over all relevant ∆r and τ equals one. One can then
concatenate successive steps of a given particle, drawing the values (∆r, τ) of each step randomly
from this probability distribution and study the corresponding compound paths. To reduce the
computational load somewhat, we will only consider paths that move strictly outward.

The procedure described above is an iterative procedure, and it allows studying the compound
paths statistically. Alternatively, one can use a recursive procedure, by applying a threshold to the
step probability distribution. The resulting binary distribution then only states which steps (∆r, τ)

are allowed and which are not. Subsequently, all allowed compound outward paths can be followed,
using a recursive algorithm, and these can again be subjected to a statistical analysis.

Figure 7 shows the distribution of radial steps. Previous studies involving the analysis of tracer
trajectories in simulations of the topological structures in plasma turbulence suggest that the lognormal
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distribution may play a significant role [23,24], and indeed, the present result seems to be compatible
with this idea, as shown by the fitted line.
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Figure 7. Probability distribution of the radial steps taken by particles, according to the TE analysis.
The blue dashed curve is a fitted lognormal distribution.

Figure 8 shows the statistical distribution of the times needed to reach the outer edge of the system
from an initial position in the core, calculated from a transfer entropy dataset obtained from ECE
data (one element of the set, at a single reference radius, being Figure 3), using the recursive method
described above. Remarkably, the distributions seem to separate into two distinct classes, namely fast
and slow paths, according to the first step taken (R2).
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Figure 8. Probability distribution of the times needed to reach the outer edge of the system from
an initial position in the core. The legend indicates the position of the first step of the compound
path (R2).
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The figure shows that each individual distribution is roughly Gaussian, as one might expect.
Therefore, these distributions are well characterized by their mean and standard deviation. Figure 9
shows the mean and standard deviation of the durations of the compound paths to reach the edge of
the system as a function of the first step taken. The graph separates into two clear classes (R2 < 3.45
and R2 > 3.53), while there is a narrow transition region in-between.
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Figure 9. Mean and standard deviation of the durations of the compound paths to reach the edge of
the system as a function of the first step taken (R2).

Figure 10 shows some examples of the fast and slow paths. The slow paths are reminiscent of
a directed random walk, while the fast paths include some very long jumps, which suggests they
could be Lévy flights [25]. Future work may be able to clarify this point. In any case, the result of this
analysis is that radial heat transport in these plasmas appears to be characterized by different transport
channels, with different propagation velocities. Presumably, the plasma is able to vary the relative
importance of these channels in order to achieve the mentioned self-organization of radial transport.
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(b) paths in the “slow” group of Figure 9.
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3.5. Modeling

As noted in the Introduction, the plasmas considered here are confined by a magnetic field. Inside
the plasma, the magnetic field lines lie on surfaces of constant flux, which have a toroidal topology.
The mean field line twist on each surface is such that ∆φ = q∆θ, on average, where ∆φ is the angle
in the toroidal direction (long way around the torus) and ∆θ is the angle in the poloidal direction
(short way around the torus). On each flux surface, q is constant. When q takes a rational value,
the magnetic field lines close on themselves after a finite number of turns. This is where turbulent
vortices, which are elongated along the direction of the field line and therefore have a filamentary
structure, are preferentially located.

The turbulent flow velocity of the plasma can be expressed as V = b×∇Φ, where Φ is a stream
function (proportional to the electrostatic potential) and b is a unit vector in the toroidal (field)
direction. Theoretically, transport barriers may arise as a consequence of zonal flows generated by
turbulence. The mechanics of the interaction between turbulent fluctuations and zonal flows is well
understood: fluctuations may generate flows through Reynolds stress [26], and the shear in these flows
then suppresses the fluctuations [27]. The complexity of these interactions has been clarified using
simplified models [28], and it has been found that sheared flow regions are preferentially formed near
rational surfaces.

Figure 11 shows the radial structure of an electrostatic fluctuation potential near a rational surface,
arbitrarily placed at r/a = 0.5, and the associated sheared flow in a very simple slab model.
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Figure 11. Potential fluctuation (Φ) and shear of the generated flow (V′ = dV/dr) for a simple
nonlinear slab model. The vertical dashed line shows the position of the singular surface.
Figure reproduced from [15].

This figure is no more than a cartoon, shown to illustrate the idea of the association between
fluctuations, rational surfaces, and sheared flow. If the instability eigenfunction Φ is symmetric with
respect to the rational surface, the flow shear |V′| = |dV/dr| will peak off the rational surface,
at a distance of the order of the width of the turbulent vortices. Likewise, an antisymmetric
eigenfunction will place the flow shear peak at the rational surface. Each type of instability will
generate its own structure, possibly modulated by the presence of other structures nearby, and the
actual situation can be rather convoluted. Nevertheless, the central idea is that the sheared flow regions
are usually located near singular surfaces.
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The plasma is pervaded by many types of instability. However, the fact that we detect minor
transport barriers associated with rational surfaces provides a hint with regard to the underlying
mechanism. Therefore, we have turned to a resistive MHD turbulence model to interpret experimental
results [29]. Thus, we have been able to show that the spontaneously arising turbulence in this model
generates sheared flow regions that act as minor transport barriers [30]. Injecting tracers to better
understand the effect of the turbulence and the sheared flow regions on transport, we have observed
that some of the tracers are trapped in the turbulent vortices, while others, with higher kinetic energies,
perform rapid radial excursions, “jumping over” the barriers. As the system is driven more strongly
(by increasing heating power levels), on average, tracers are endowed with higher energies, so that
more tracers will be able to “jump” the minor barriers. In fact, this is the mechanism we proposed
to explain the degradation of confinement in the TJ-II stellarator [13]. Likewise, in the framework of
the present study, we observe the existence of minor transport barriers and two classes of “particles”:
slow and fast, or “diffusive” and “jumping”, which seems to fit nicely with these ideas.

Figure 12 shows a snapshot of a typical modeling result obtained with the mentioned resistive
MHD model in stellarator-like (low shear) cylindrical geometry. The area of the graph corresponds to
a region of the poloidal-radial (θ, r) plane at constant toroidal angle (φ = constant). The graph shows
vortices (trapping regions), such as the poloidally periodic structures seen near r/a = 0.7, related to
a corresponding rational surface. Also visible are zonal flow regions (horizontally elongated structures
with predominantly horizontal flow velocities in both directions), on both sides of the vortex sequence.

In previous work, we have successfully applied the transfer entropy to turbulence simulations
of this type. This effort yielded a qualitatively similar picture as the reported experimental results,
with “trapping zones” and radial “jumps” [10,11]. We also verified the calculation of the effective
diffusivity from the TE and compared it to traditional estimates for such simulations [31].

Figure 12. Modeling results, showing zonal flow regions and vortices.

4. Discussion

It has long been known that magnetically confined plasmas occasionally develop spontaneous
transport barriers. Early work carried out at the RTP tokamak clearly demonstrated the existence of
a multiplicity of such transport barriers throughout the plasma, whose location was found to be close
to low order rational surfaces [32]. Subsequently, a simplified so-called “q-comb” transport model was
developed to interpret the observations, based on radially localized reductions of the heat diffusion
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coefficient, coinciding with low order rational surfaces [33]. However, this and similar work has not led
to a general incorporation of mechanisms associated with rational surfaces in heat transport models for
fusion plasmas, probably due to the fact that further experimental evidence for these minor transport
barriers, associated with rational surfaces, has been difficult to obtain.

Under specific conditions, plasmas can also develop so-called Internal Transport Barriers
(ITBs) [34], which arise only transiently, but are much stronger than the “minor transport barriers”
that are the focus of this paper. In tokamaks, strong ITBs can be established by creating a core
reversed magnetic shear region, while the location of the ITB appears correlated with integral values
of the safety factor, q [35]. The impact of ITBs on heat transport has been studied in some detail at,
e.g., Alcator C-Mod [36] and JET [19,37], showing that the heat diffusivity drops strongly in the ITB
region. ITBs have also been obtained and studied in stellarators [38], and here, too, a relationship with
the magnetic configuration is suggested. The existence of ITBs is widely acknowledged and supported
by experimental evidence on many machines.

A localized transport barrier (i.e., a local reduction of heat flux) implies a local change of slope
of the temperature profile. Given the general turbulent state of the plasma and the prevailing
measurement resolution and errors, such rather localized changes of slope are usually not easy
to detect. Even with strong ITBs, it is often difficult to delimit the precise location of the ITB, based on
the temperature profile alone. Hence, it is not very surprising that minor transport barriers usually go
undetected. As a result, many transport models completely ignore their possible existence and do not
contemplate any effects that explicitly depend on the rational values of the rotational transform.

In our recent series of papers, using a novel method to detect minor transport barriers based on
the transfer entropy, we have tried to show that such barriers occur quite frequently, even in plasmas
with no easily discernible “steps” in the temperature profile, and they tend to be associated with low
order rational surfaces [10,11,13]. By studying the barriers at different heating power levels, we have
been able to observe a change in the characteristics of transport (an increased importance of heat
“jumping” over the minor barriers) that suggests that these minor barriers could in fact play a prime
role in the understanding of the important and ubiquitous phenomenon of power degradation.

To recall, power degradation is the phenomenon that the energy confined in the plasma
(W) increases less than linearly with the heating power. In all magnetic confinement devices
where the scaling of the energy confinement time (τE = W/P, subject to some caveats and
corrections) with heating power (P) has been studied, it is found that it scales like τE ∝ PαP , where
αP = −0.6± 0.1 [39–43]. The fact that this scaling holds across the board for the main types of magnetic
fusion devices (tokamaks and stellarators) indicates that it must be due to a very basic mechanism,
common to these devices.

Our analysis suggests that transport does not involve a single mechanism, but various competing
mechanisms, whose relative importance depends on the drive. Hence, describing transport via a single
diffusion coefficient (or a similar simplified description) may not be adequate to capture the physics
underlying power degradation.

In previous work, we have made use of a resistive MHD model [29] to understand both the
detected minor transport barriers and the “jumping” behavior [10,11,13]. While this model does not
capture all details of turbulence in fusion-grade plasmas, it does allow a precise analysis of the effect
of MHD-type turbulence, which typically is associated with low order rational surfaces. In view
of the fact that our analyses seem to indicate that low order rational surfaces play an important
role, it makes sense to use this type of model to gain further insight. The modeling results seem to
indicate that sheared flow layers tend to form near low order rational surfaces as a consequence of
plasma self-organization. These sheared flow layers tend to suppress turbulence locally, leading to
minor transport barriers [2]. Near these barriers, turbulent vortices form where radially propagating
“particles” can get trapped. The observed “jumping” behavior is also reproduced by the modeling
results and could be associated with the coupling between MHD turbulence associated with different
rational surfaces or, more generally, “avalanches”. The observations indicate that the “jumping”
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behavior increases in intensity when the heating power is increased, suggesting an explanation for the
phenomenon of power degradation mentioned in the Introduction.

We note that the suggested association with low order rational surfaces may apply only under
specific circumstances (namely, those where the resistive MHD model we used are relevant; typically,
stellarators). Recent theoretical [44] and experimental [45] work on tokamaks suggests the existence of
a so-called E× B “staircase” in hot plasmas, largely analogous to the ideas we propose here, but only
loosely connected to rational surfaces, if at all. We conclude from this work that magnetically confined
fusion plasmas have a general tendency to self-organize by forming sheared flow layers and minor
transport barriers, with characteristics that may depend somewhat on the underlying turbulence
mechanisms.

In previous work, we have studied transport from the particle perspective by injecting tracer
particles in the turbulent flow computed using the mentioned resistive MHD model [23,24,30,46].
Depending on the energy of the tracer particles, some are trapped by the turbulent vortices, while
others, typically with more energy, escape the vortices and end up in the zonal flow regions near the
vortices, which constitute a barrier for radial transport. Only particles with the highest energies are
able to jump over the barriers [30]. These tracer particle dynamics are consistent with the dynamical
picture offered by the transfer entropy analysis presented here.

5. Conclusions

This work highlights the non-linear and complex nature of heat transport in strongly driven
fusion plasmas. Using a relatively novel analysis method, the transfer entropy, we have shown that
heat transport in magnetic fusion devices exhibits qualitatively similar properties in two stellarators
and one tokamak. Analysis based on the use of the transfer entropy demonstrates the existence of
radially localized zones that can be described as “minor barriers” and associated “trapping regions”.
A measure was introduced to quantify the “persistence” of local radial TE minima, associated with the
minor barriers. We also devised a simple technique to obtain a crude estimate of the effective local
heat diffusivity from the TE. The resulting effective heat diffusivity was found to be compatible with
traditional estimates, while showing radial variations that appear to be associated with the previously
identified minor barriers.

In previous work on two stellarators, we found that the “minor barriers” appear to be associated
with low order rational surfaces. In the tokamak case, the relation with low order rational surfaces was
less clear [15]. Heat transport was found to be able to “jump over” these minor barriers to some degree,
and as heating power was raised, the “jumping behavior” was shown to increase in intensity [11,13,15],
providing a possible explanation for the ubiquitous phenomenon of “power degradation” observed in
magnetically confined fusion plasmas.

In the present work, we have extended the analysis by reinterpreting the transfer entropy in
terms of a continuous time random walk. This approach revealed the existence of clearly separated
“fast” and “slow” transport channels (which also appears to be in accordance with a recent more
traditional analysis reported in [47]). We interpret the “slow” channel in terms of the usual diffusive
transport, whereas the “fast channel” would be associated with the “jumping” behavior mentioned
above. In terms of CTRW terminology, the former would be associated with the standard random
walk, whereas the latter would correspond to Lévy walks.

The methodology used here does not allow making quantitative statements about the relative
importance of the “fast” and “slow” transport channels. This important issue is left to future work,
as is the question of particle transport (as compared to heat transport). Furthermore, so far, we have
focused on fusion plasmas with relatively low heating power (L-mode plasmas), the reason being that
it is often easier to obtain a steady state in L-mode, while the absence of violent instabilities associated
with the H-mode edge transport barrier (so-called edge localized modes) further facilitates the analysis.
It is clear, however, that it would be important to extend this work also to H-mode plasmas.
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