12 research outputs found

    Moesin and its activating kinase Slik are required for cortical stability and microtubule organization in mitotic cells

    Get PDF
    Cell division requires cell shape changes involving the localized reorganization of cortical actin, which must be tightly linked with chromosome segregation operated by the mitotic spindle. How this multistep process is coordinated remains poorly understood. In this study, we show that the actin/membrane linker moesin, the single ERM (ezrin, radixin, and moesin) protein in Drosophila melanogaster, is required to maintain cortical stability during mitosis. Mitosis onset is characterized by a burst of moesin activation mediated by a Slik kinase–dependent phosphorylation. Activated moesin homogenously localizes at the cortex in prometaphase and is progressively restricted at the equator in later stages. Lack of moesin or inhibition of its activation destabilized the cortex throughout mitosis, resulting in severe cortical deformations and abnormal distribution of actomyosin regulators. Inhibiting moesin activation also impaired microtubule organization and precluded stable positioning of the mitotic spindle. We propose that the spatiotemporal control of moesin activation at the mitotic cortex provides localized cues to coordinate cortical contractility and microtubule interactions during cell division

    High performance thick-film pressure sensors on steel

    Get PDF
    The aim of this work is to examine the possibility of high performance pressure sensors based on piezoresistive thick films deposited on steel membranes, which combine the performance advantage of thin-film sensors (high-strength steel substrates, assembly without elastomer seal) with the low cost of ceramic thick-film sensors. As standard thick-film firing conditions degrade the properties of most high-strength steels, two routes were explored: 1) application of a special steel, which does not undergo mechanical degradation at 850°C, and 2) development and use of thick-film materials firing at a lower temperature. This work presents the development and characterisation of low-firing thick-film systems (dielectrics, resistors and conductors), formulated to achieve chemical and thermal expansion compatibility with a wide range of substrates. Results on electrical properties of these systems: resistance, thermal coefficient of resistance (TCR) and strain response on different steel substrates are compared, together with those of standard thick-film systems on heat resistant special steel

    The actin-binding ERM protein Moesin binds to and stabilizes microtubules at the cell cortex

    Get PDF
    Ezrin, Radixin, and Moesin (ERM) proteins play important roles in many cellular processes including cell division. Recent studies have highlighted the implications of their metastatic potential in cancers. ERM’s role in these processes is largely attributed to their ability to link actin filaments to the plasma membrane. In this paper, we show that the ERM protein Moesin directly binds to microtubules in vitro and stabilizes microtubules at the cell cortex in vivo. We identified two evolutionarily conserved residues in the FERM (4.1 protein and ERM) domains of ERMs that mediated the association with microtubules. This ERM–microtubule interaction was required for regulating spindle organization in metaphase and cell shape transformation after anaphase onset but was dispensable for bridging actin filaments to the metaphase cortex. These findings provide a molecular framework for understanding the complex functional interplay between the microtubule and actin cytoskeletons mediated by ERM proteins in mitosis and have broad implications in both physiological and pathological processes that require ERMs

    LRCH Proteins: A Novel Family of Cytoskeletal Regulators

    Get PDF
    Background: Comparative genomics has revealed an unexpected level of conservation for gene products across the evolution of animal species. However, the molecular function of only a few proteins has been investigated experimentally, and the role of many animal proteins still remains unknown. Here we report the characterization of a novel family of evolutionary conserved proteins, which display specific features of cytoskeletal scaffolding proteins, referred to as LRCHs. Principal Findings: Taking advantage of the existence of a single LRCH gene in flies, dLRCH, we explored its function in cultured cells, and show that dLRCH act to stabilize the cell cortex during cell division. dLRCH depletion leads to ectopic cortical blebs and alters positioning of the mitotic spindle. We further examined the consequences of dLRCH deletion throughout development and adult life. Although dLRCH is not essential for cell division in vivo, flies lacking dLRCH display a reduced fertility and fitness, particularly when raised at extreme temperatures. Conclusion/Significance: These results support the idea that some cytoskeletal regulators are important to buffer environmental variations and ensure the proper execution of basic cellular processes, such as the control of cell shape

    DHTP is an allosteric inhibitor of the kinesin-13 family of microtubule depolymerases

    Get PDF
    AbstractThe kinesin-13 family of microtubule depolymerases is a major regulator of microtubule dynamics. RNA interference-induced knockdown studies have highlighted their importance in many cell division processes including spindle assembly and chromosome segregation. Since microtubule turnovers and most mitotic events are relatively rapid (in minutes or seconds), developing tools that offer faster control over protein functions is therefore essential to more effectively interrogate kinesin-13 activities in living cells. Here, we report the identification and characterization of a selective allosteric kinesin-13 inhibitor, DHTP. Using high resolution microscopy, we show that DHTP is cell permeable and can modulate microtubule dynamics in cells

    NF45 and NF90 Regulate Mitotic Gene Expression by Competing with Staufen-Mediated mRNA Decay.

    No full text
    In human cells, the expression of ∼1,000 genes is modulated throughout the cell cycle. Although some of these genes are controlled by specific transcriptional programs, very little is known about their post-transcriptional regulation. Here, we analyze the expression signature associated with all 687 RNA-binding proteins (RBPs) and identify 39 that significantly correlate with cell cycle mRNAs. We find that NF45 and NF90 play essential roles in mitosis, and transcriptome analysis reveals that they are necessary for the expression of a subset of mitotic mRNAs. Using proteomics, we identify protein clusters associated with the NF45-NF90 complex, including components of Staufen-mediated mRNA decay (SMD). We show that depletion of SMD components increases the binding of mitotic mRNAs to the NF45-NF90 complex and rescues cells from mitotic defects. Together, our results indicate that the NF45-NF90 complex plays essential roles in mitosis by competing with the SMD machinery for a common set of mRNAs
    corecore