59 research outputs found
Nickel(II) complexes based on L-amino-acid-derived ligands: Synthesis, characterization and study of the role of the supramolecular structure in carbon dioxide capture
The formation of the symmetrical 3-carbonate-bridged self-assembled trinuclear NiII complex Na2{[Ni(LO)2(H2O)]3(3-CO3)} (LO is the carboxylate anion of a l-tyrosine derivative), involves atmospheric CO2 uptake. The asymmetric unit of the complex comprises an octahedral coordination for the NiII with two l-tyrosine-based ligands, a water molecule and one O atom of the carbonate bridge. The Ni3–3-CO3 core in this compound is the first reported of this kind according to the Cambridge Structural Database (CSD). The supramolecular structure is mainly sustained by hydrogen bonds developed by the phenolic functionality of the l-tyrosine moiety of one ligand and the carboxylate group of a neighbouring ligand. The crystal packing is then characterized by three interpenetrated supramolecular helices associated with a diastereoisomer of the type RsupP, which is essential for the assembly process. Magnetic susceptibility and magnetization data support weak ferromagnetic exchange interactions within the novel Ni3–3-CO3 core. The NiII complex obtained under the same synthetic conditions but using the analogous ligand derived from the amino acid l-phenylalanine instead of l-tyrosine gives rise to to a mononuclear octahedral system. The results obtained for the different complexes demonstrate the role of the supramolecular structure regarding the CO2 uptake property for these NiII–amino-acid-based systems.Fil: Rivas Marquina, Andrea Paola. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂmica Inorgánica, AnalĂtica y QuĂmica FĂsica; ArgentinaFil: Movilla, Federico. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂmica Inorgánica, AnalĂtica y QuĂmica FĂsica; ArgentinaFil: Sanchez Montilva, Olga Carolina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂmica Inorgánica, AnalĂtica y QuĂmica FĂsica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa; ArgentinaFil: Rentschler, Eva. Universidad de Mainz; AlemaniaFil: Carrella, Luca. Universidad de Mainz; AlemaniaFil: AlborĂ©s, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂmica Inorgánica, AnalĂtica y QuĂmica FĂsica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa; ArgentinaFil: Di Salvo, Florencia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂmica Inorgánica, AnalĂtica y QuĂmica FĂsica; Argentin
Luminescence and light-driven energy and electron transfer from an exceptionally long-lived excited state of a non-innocent chromium(III) complex
Photoactive metal complexes employing Earth-abundant metal ions are a key to sustainable photophysical and photochemical applications. We exploit the effects of an inversion center and ligand non-innocence to tune the luminescence and photochemistry of the excited state of the [CrN6] chromophore [Cr(tpe)2]3+ with close to octahedral symmetry (tpe=1,1,1-tris(pyrid-2-yl)ethane). [Cr(tpe)2]3+ exhibits the longest luminescence lifetime (τ=4500 μs) reported up to date for a molecular polypyridyl chromium(III) complex together with a very high luminescence quantum yield of Φ=8.2 % at room temperature in fluid solution. Furthermore, the tpe ligands in [Cr(tpe)2]3+ are redox non-innocent, leading to reversible reductive chemistry. The excited state redox potential and lifetime of [Cr(tpe)2]3+ surpass those of the classical photosensitizer [Ru(bpy)3]2+ (bpy=2,2′-bipyridine) enabling energy transfer (to oxygen) and photoredox processes (with azulene and tri(n-butyl)amine)
Jesuit Theologian to Lecture at USD
The 2,2′:6′:2″-terpyridine ligand has literally shaped the coordination chemistry of transition metal complexes in a plethora of fields. Expansion of the ligand bite by amine functionalities between the pyridine units in the tridentate N,N’-dimethyl-N,N’-dipyridine-2-yl-pyridine-2,6-diamine ligand (ddpd) modifies the properties of corresponding transition metal complexes, comprising redox chemistry, molecular dynamics, magnetism and luminescence. The origins of these differences between ddpd and tpy complexes will be elucidated and comprehensively summarized with respect to first row transition metal complexes with d2–d10 electron configurations. Emerging applications of these ddpd complexes complementary to those of the well-known terpyridine ligand will be highlighted
Assessing the reactivity of sodium alkyl-magnesiates towards quinoxaline : single electron transfer (SET) vs. nucleophilic alkylation processes
By exploring the reactivity of sodium butyl-magnesiate (1) supported by the bulky chelating silyl(bisamido) ligand {Ph2Si(NAr*)2}(2-) (Ar* = 2,6-iPr2-C6H3) towards Quinoxaline (Qx), the ability of this bimetallic system to effectively promote SET processes has been disclosed. Thus 1 executes the single-electron reduction of Qx affording complex (2) whose structure in the solid state contains two quinaxolyl radical anions QxË™ stabilised within a dimeric magnesiate framework. Combining multinuclear NMR and EPR measurements with DFT calculations, new insights into the constitution of 2 in solution and its magnetic behaviour have been gained. Further evidence on the SET reactivity of 1 was found when it was reacted with nitroxyl radical TEMPO which furnished contacted ion pair sodium magnesiate [(Ph2Si(NAr*)2)Mg(TEMPO(-))Na(THF)3] (4) where both metals are connected by an alkoxide bridge, resulting from reduction of TEMPO. The role that the different ligands present in 1 can play in these new SET reactions has also been assessed. Using an amination approach, the Bu group in 1 can be replaced by the more basic amide TMP allowing the isolation of (3) which was characterised by multinuclear NMR and X-ray crystallography. (1)H NMR monitoring of the reaction of 3 with Qx showed its conversion to 2, leaving the hydrogen atoms of the heterocycle untouched. Contrastingly, using sodium homoalkyl magnesiate [NaMg(CH2SiMe3)3] (5) led to the chemoselective C2 alkylation of this heterocycle, suggesting that the presence of the steric stabiliser {Ph2Si(NAr*)2}(2-) on the mixed-metal reagent is required in order to facilitate the Qx reduction
Miracolo a Napoli. Diego Armando Maradona e la cittĂ partenopea
Ăžessi ritgerĂ° er 10 eininga lokaverkefni Ă Ătölsku og gildir til BA prĂłfs. ĂŤ henni mun Ă©g fjalla um Ăľau áhrif sem knattspyrnugoĂ°sögnin Diego Armando Maradona hafĂ°i á menningu NapĂłlĂ, bæði á fĂłtboltaliĂ° borgarinnar og stuĂ°ningsmenn. MeginmarkmiĂ° ritgerĂ°arinnar er aĂ° komast aĂ° ĂľvĂ hvers vegna hann hafĂ°i svona mikil áhrif á ĂbĂşa borgarinnar Ă gegnum knattspyrnu. Til Ăľess aĂ° komast aĂ° ĂľvĂ byrja Ă©g á aĂ° kafa aftur Ă sögu NapĂłlĂborgar og skoĂ°a tĂmabilin fyrir og eftir sameiningu ĂŤtalĂu. Einnig skoĂ°a Ă©g sögu mafĂunnar Camorra sem hefur lengi haft mikil völd Ă borginni og hafĂ°i mikil áhrif á tĂma og komu Maradona til NapĂłlĂ. Saga knattspyrnufĂ©lagsins S.S.C Napoli verĂ°ur rakin ásamt æsku Maradona og tĂma hans Ă Ăľessari sögurĂku borg sem knattspyrnumaĂ°ur
Counter-complementarity control of the weak exchange interaction in a bent {Ni(ii)3 complex with a ÎĽ-phenoxide-ÎĽ-carboxylate double bridge
We have prepared and structurally characterized a novel {Ni3} bent complex bearing a double ÎĽ-phenoxide-ÎĽ-carboxylate bridge. Both terminal Ni(ii) sites are symmetry related, offering a simplified exchange interaction scheme. DC magnetic data is consistent with a weak antiferromagnetic interaction between the central and terminal Ni(ii) ions. As expected for a Ni(ii) system, local zero-field splitting is observed, which can be experimentally established. Broken symmetry quantum chemical calculations, as well as ab initio CASSCF-SA-SOC computations that support the magnetic experimental data, were also performed. From the analysis of other reported closely related Ni(ii) systems, a counter-complementarity effect exerted by the carboxylate bridge is proposed, which might explain the weaker exchange interactions compared to those observed in double ÎĽ-phenoxide bridged Ni(ii) compounds.Fil: Fiorini, Guillermo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂmica Inorgánica, AnalĂtica y QuĂmica FĂsica; ArgentinaFil: Carrella, Luca. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Rentschler, Eva. Johannes Gutenberg Universitat Mainz; AlemaniaFil: AlborĂ©s, Pablo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂmica Inorgánica, AnalĂtica y QuĂmica FĂsica; Argentin
Synthesis, Structural, and Magnetic Characterization of a Mixed 3d/4f 12-Metallacrown-4 Family of Complexes
A new family of complexes (tBu4N){[LnIII(O2CBut)4][12-MC-Mn(III)N(shi)-4]}·5CH2Cl2 (Ln = Gd (1) and Tb (2)), (tBu4N)2{[YIII(O2CBut)4][12-MC-Mn(III)N(shi)-4]}(ClO4) (3); where shiH3 = salicylhydroxamic acid; ButCO2− = pivalate ions; tBu4N = tetrabutylammonium and ClO4− = perchlorate ions, has been isolated. The reaction of salicylhydroxamic acid with Mn(O2CBut)2·2H2O, Ln(NO3)3·xH2O, tBu4NClO4 in the presence of morpholine (C4H9NO) led to the isolation of compounds 1–3. The complexes belong to the 12-MC-4 family of Metallacrowns (MCs) possessing a central {Mn4IIILnIII(µ-NO)4}11+ core with the four MnIII atoms occupying the periphery positions, while the formed [Mn–N–O] repeating unit, assists in the accommodation of the LnIII atom in the center of the ring. Peripheral ligation is provided by four η1:η1:μ pivalate ions. Direct current magnetic susceptibility (dc) measurements revealed the presence of predominant antiferromagnetic exchange interactions within the metal centers. A 1-J fitting model was used in order to quantify the MnIII–MnIII interactions and fitting of the data, for the diamagnetic YIII analogue, gave J = −3.74 cm−1 and gMn(III) = 2.07. Fitting of the {Mn4Gd} compound using a 2-J model, counting additionally for the MnIII–GdIII interactions, revealed values of J1 = −3.52 cm−1, J2 = −0.45 cm−1, and gMn(III) = 1.99
Structural characterization and magnetic property studies of a mixed-valence {CoIIICo II 4 } complex with a ÎĽ4-oxo tetrahedral {Co II 4 } motif
We have synthesized and structurally characterized a new mixed valence pentanuclear Co complex, bearing a rare ÎĽ4-O-tetrahedral CoII 4 unit, by employing a pyridine-like Schiff base ligand. We have performed DC magnetic susceptibility and magnetization measurements over polycrystalline samples and chemical quantum computations in order to understand the exchange interaction pattern within Co(II) sites and ground state magnetic anisotropy. This new complex shows an overall antiferromagnetic exchange interaction whose strength strongly depends on the local symmetry of Co(II) sites. Also, local ion magnetic anisotropy reveals a strongly axial behaviour with the lowest Kramers doublet (KD) at each Co(II) ion sufficiently isolated from excited states at low temperatures. Two Co(II) sites show tetrahedral symmetry and the spin only formalism including axial zero-field splitting (ZFS) term properly described them; on the other hand, the other two Co(II) sites have distorted octahedral and square base pyramidal coordination spheres, and a strong orbital contribution leads to a failure of the spin only formalism. A model of four Seff = 1/2 exchange interacting sites is necessary in order to account for low temperature magnetization behaviour. In view of the strongly anisotropic KD states, the exchange interactions are forced to be modelled as anisotropic ones. Overall, experimental data and quantum chemical computations are in good agreement, supporting the proposed model for magnetic behaviour.Fil: Fiorini, Guillermo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa; ArgentinaFil: Carrella, Luca. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Rentschler, Eva. Johannes Gutenberg Universitat Mainz; AlemaniaFil: AlborĂ©s, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂmica Inorgánica, AnalĂtica y QuĂmica FĂsica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa; Argentin
Three Novel Thiazole-Arm Containing 1,3,4-Oxadiazole-Based [HS-HS] Fe(II) Dinuclear Complexes
Novel synthesis of 2,5-bis[(1,3-thiazol-2-ylmethyl)amino]methyl-1,3,4-oxadiazole (LThiazole) is reported, along with the preparation of three new dinuclear Fe(II) complexes with different counterions [FeII2(μ2-LThiazole)2](BF4)4·2CH3CN (1), [FeII2(μ2-LThiazole)2](ClO4)4 (2) and [FeII2(μ2-LThiazole)2](CF3SO3)4·2CH3CN (3). The obtained complexes were characterized by single-crystal X-ray crystallography, SQUID magnetometry and IR spectroscopy. The structure of the crystalline material was determined at 120 K for 1 and 3. The magnetic properties of all three complexes (1–3) were measured between 2–300 K and clearly show that all three complexes stay in the high-spin state over the measured temperature range
- …