492 research outputs found

    The apparent exponential radiation of Phanerozoic land vertebrates reflects spatial sampling biases

    Get PDF
    There is no consensus about how terrestrial biodiversity was assembled through deep time, and in particular whether it has risen exponentially over the Phanerozoic. Using a database of 60,859 fossil occurrences, we show that the spatial extent of the worldwide terrestrial tetrapod fossil record itself expands exponentially through the Phanerozoic. Changes in spatial sampling explain up to 67% of the change in known fossil species counts and, because these changes are decoupled from variation in habitable land area that existed through time, this therefore represents a real and profound sampling bias that cannot be explained as redundancy. To address this bias, we estimate terrestrial tetrapod diversity for palaeogeographic regions of approximately equal size. We find that regional-scale diversity was constrained over timespans of tens to hundreds of millions of years, and similar patterns are recovered for major subgroups, such as dinosaurs, mammals, and squamates. Although Cretaceous/Paleogene mass extinction catalysed an abrupt two- to three-fold increase in regional diversity 66 million years ago, no further increases occurred, and recent levels of regional diversity do not exceed those of the Paleogene. These results parallel those recovered in analyses of local community-level richness. Taken together, our findings strongly contradict past studies that suggested unbounded diversity increases at local and regional scales over the last 100 million years

    A temperate palaeodiversity peak in Mesozoic dinosaurs and evidence for Late Cretaceous geographical partitioning

    Get PDF
    Aim  Modern biodiversity peaks in the tropics and declines poleward, a pattern that is potentially driven by climate. Although this latitudinal biodiversity gradient (LBG) also characterizes the marine invertebrate fossil record, distributions of ancient terrestrial faunas are poorly understood. This study utilizes data on the dinosaur fossil record to examine spatial patterns in terrestrial biodiversity throughout the Mesozoic.\ud Location  We compiled data on fossil occurrences across the globe.\ud Methods  We compiled a comprehensive dataset of Mesozoic dinosaur genera (738), including birds. Following the utilization of sampling standardization techniques to mediate for the uneven sampling of the fossil record, we constructed latitudinal patterns of biodiversity from this dataset.\ud Results  The dominant group of Mesozoic terrestrial vertebrates did not conform to the modern LBG. Instead, dinosaur diversity was highest at temperate palaeolatitudes throughout the 160 million year span of dinosaurian evolutionary history. Latitudinal diversity correlates strongly with the distribution of land area. Late Cretaceous sauropods and ornithischians exhibit disparate LBGs.\ud Main conclusions  The continuity of the palaeotemperate peak in dinosaur diversity indicates a diminished role for climate on the Mesozoic LBG; instead, dinosaur diversity may have been driven by the amount of land area among latitudinal belts. There is no evidence that the tropics acted as a cradle for dinosaur diversity. Geographical partitioning among major clades of herbivorous dinosaurs in the Late Cretaceous may result from the advanced stages of continental fragmentation and/or differing responses to increasing latitudinal climatic zonation. Our results suggest that the modern-day LBG on land was only established 30 million years ago, following a significant post-Eocene recalibration, potentially related to increased seasonality

    Identification and characterization of two polymorphic Ya5 Alu repeats

    Get PDF
    Two new polymorphic Alu elements (HS2.25 and HS4.14) belonging to the young (Ya5/8) subfamily of human-specific Alu repeats have been identified. DNA sequence analysis of both Alu repeats revealed that each Alu repeat had a long 3\u27-oligo-dA-rich tail (41 and 52 nucleotides in length) and a low level of random mutations. HS2.25 and HS4.14 were flanked by short precise direct repeats of 8 and 14 nucleotides in length, respectively. HS2.25 was located on human chromosome 13, and HS4.14 on chromosome 1. Both Alu elements were absent from the orthologous positions within the genomes of non-human primates, and were highly polymorphic in a survey of twelve geographically diverse human groups

    Hydrodynamics and Nonlocal Conductivities in Vortex States of Type II Superconductors

    Full text link
    A hydrodynamical description for vortex states in type II superconductors is presented based on the time-dependent Ginzburg-Landau equation (TDGL). In contrast to the familiar extension of a single vortex dynamics based on the force balance, our description is consistent with the known hydrodynamics of a rotating neutral superfluid and correctly includes informations on the Goldstone mode. Further it enables one to examine nonlocal conductivities perpendicular to the magnetic field in terms of Kubo formula. The nonlocal conductivities deviate from the usual vortex flow expressions typically when the nonlocality parallel to the field becomes weaker than the perpendicular one measuring a degree of positional correlations, and, for instance, the superconducting contribution of dc Hall conductivity nonlocal only in directions perpendicular to the field becomes vanishingly small in the situations with large shear viscosity, leading to an experimentally measurable relation ρxyρxx2\rho_{xy} \sim {\rho_{xx}^2} among the total resistivity components. Other situations are also discussed on the basis of the resulting expressions.Comment: 12 pages, no figures, to appear in J. Phys. Soc. Jpn. in October, 199

    Combined treatment with inhibitors of ErbB Receptors and Hh signaling pathways is more effective than single treatment in reducing the growth of malignant mesothelioma both in vitro and in vivo

    Get PDF
    Malignant mesothelioma (MM) is a rare orphan aggressive neoplasia with low survival rates. Among the other signaling pathways, ErbB receptors and Hh signaling are deregulated in MM. Thus, molecules involved in these signaling pathways could be used for targeted therapy approaches. The aim of this study was to evaluate the effects of inhibitors of Hh- (GANT-61) and ErbB receptors (Afatinib)-mediated signaling pathways, when used alone or in combination, on growth, cell cycle, cell death and autophagy, modulation of molecules involved in transduction pathways, in three human MM cell lines of different histotypes. The efficacy of the combined treatment was also evaluated in a murine epithelioid MM cell line both in vitro and in vivo. This study demonstrated that combined treatment with two inhibitors counteracting the activation of two different signaling pathways involved in neoplastic transformation and progression, such as those activated by ErbB and Hh signaling, is more effective than the single treatments in reducing MM growth in vitro and in vivo. This study may have clinical implications for the development of targeted therapy approaches for MM

    Identification of Distinctive Patterns of USP19-Mediated Growth Regulation in Normal and Malignant Cells

    Get PDF
    We previously reported that the USP19 deubiquitinating enzyme positively regulates proliferation in fibroblasts by stabilizing KPC1, a ubiquitin ligase for p27Kip1. To explore whether this role of USP19 extends to other cellular systems, we tested the effects of silencing of USP19 in several human prostate and breast models, including carcinoma cell lines. Depletion of USP19 inhibited proliferation in prostate cancer DU145, PC-3 and 22RV1 cells, which was similar to the pattern established in fibroblasts in that it was due to decreased progression from G1 to S phase and associated with a stabilization of the cyclin-dependent kinase inhibitor p27Kip1. However, in contrast to previous findings in fibroblasts, the stabilization of p27Kip1 upon USP19 depletion was not associated with changes in the levels of the KPC1 ligase. USP19 could also regulate the growth of immortalized MCF10A breast epithelial cells through a similar mechanism. This regulatory pattern was lost, though, in breast cancer MCF7 and MDA-MB-231 cells and in prostate carcinoma LNCaP cells. Of interest, the transformation of fibroblasts through overexpression of an oncogenic form of Ras disrupted the USP19-mediated regulation of cell growth and of levels of p27Kip1 and KPC1. Thus, the cell context appears determinant for the ability of USP19 to regulate cell proliferation and p27Kip1 levels. This may occur through both KPC1 dependent and independent mechanisms. Moreover, a complete loss of USP19 function on cell growth may arise as a result of oncogenic transformation of cells

    Hip joint articular soft tissues of non-dinosaurian Dinosauromorpha and early Dinosauria: evolutionary and biomechanical implications for Saurischia

    Get PDF
    Dinosauromorphs evolved a wide diversity of hind limb skeletal morphologies, suggesting highly divergent articular soft tissue anatomies. However, poor preservation of articular soft tissues in fossils has hampered any follow-on functional inferences. We reconstruct the hip joint soft tissue anatomy of non-dinosaurian dinosauromorphs and early dinosaurs using osteological correlates derived from extant sauropsids and infer trends in character transitions along the theropod and sauropodomorph lineagues. Femora and pelves of 107 dinosauromorphs and outgroup taxa were digitized using 3D imaging techniques. Key transitions were estimated using maximum likelihood ancestral state reconstruction. The hips of dinosauromorphs possessed wide a disparity of soft tissue morphologies beyond the types and combinations exhibited by extant archosaurs. Early evolution of the dinosauriform hip joint was characterized by the retention of a prominent femoral hyaline cartilage cone in post-neonatal individuals, with the cartilage cone independently reduced within theropods and sauropodomorphs. The femur of Dinosauriformes possessed a fibrocartilage sleeve on the metaphysis, which surrounded a hyaline core. The acetabulum of Dinosauriformes possessed distinct labrum and antitrochanter structures. In sauropodomorphs, hip congruence was maintained by thick hyaline cartilage on the femoral head, whereas theropods relied on acetabular tissues such as ligaments and articular pads. In particular, the craniolaterally ossified hip capsule of non- Avetheropoda neotheropods permitted mostly parasagittal femoral movements. These data indicate that the dinosauromorph hip underwent mosaic evolution within the saurischian lineage and that sauropodomorphs and theropods underwent both convergence and divergence in articular soft tissues, correlated with transitions in body size, locomotor posture, and joint loading
    corecore