491 research outputs found
A pragmatic randomised controlled trial of hydrotherapy and land exercises on overall well being and quality of life in rheumatoid arthritis
Background \ud
Hydrotherapy is highly valued by people with rheumatoid arthritis yet few studies have compared the benefits of exercises in heated water against exercises on land. In particular, data on quality of life is rarely reported. This is especially important because patients treated with hydrotherapy often report an enhanced sense of well-being. We report a randomised controlled trial in which we compared the effects of hydrotherapy with exercises on land on overall response to treatment, physical function and quality of life in patients with rheumatoid arthritis. \ud
\ud
Methods \ud
One hundred and fifteen patients with RA were randomised to receive a weekly 30-minute session of hydrotherapy or similar exercises on land for 6 weeks. Our primary outcome was a self-rated global impression of change – a measure of treatment effect on a 7-point scale ranging from 1(very much worse) to 7 (very much better) assessed immediately on completion of treatment. Secondary outcomes including EuroQol health related quality of life, EuroQol health status valuation, HAQ, 10 metre walk time and pain scores were collected at baseline, after treatment and 3 months later. Binary outcomes were analysed by Fisher's exact test and continuous variables by Wilcoxon or Mann-Whitney tests. \ud
\ud
Results \ud
Baseline characteristics of the two groups were comparable. Significantly more patients treated with hydrotherapy (40/46, 87%) were much better or very much better than the patients treated with land exercise (19/40, 47.5%), p < 0.001 Fisher's exact test. Eleven patients allocated land exercise failed to complete treatment compared with 4 patients allocated hydrotherapy (p = 0.09). Sensitivity analyses confirmed an advantage for hydrotherapy if we assumed non-completers would all not have responded (response rates 70% versus 38%; p < 0.001) or if we assumed that non-completers would have had the same response as completers (response rates 82% versus 55% p = 0.002). Ten metre walk time improved after treatment in both cases (median pre-treatment time for both groups combined 10.9 seconds, post-treatment 9.1 s, and 3 months later 9.6 s). There was however no difference between treatment groups. Similarly there were no significant differences between groups in terms of changes to HAQ, EQ-5D utility score, EQ VAS and pain VAS. \ud
\ud
Conclusion \ud
Patients with RA treated with hydrotherapy are more likely to report feeling much better or very much better than those treated with land exercises immediately on completion of the treatment programme. This perceived benefit was not reflected by differences between groups in 10-metre walk times, functional scores, quality of life measures and pain scores
On the monotone stability approach to BSDEs with jumps: Extensions, concrete criteria and examples
We show a concise extension of the monotone stability approach to backward
stochastic differential equations (BSDEs) that are jointly driven by a Brownian
motion and a random measure for jumps, which could be of infinite activity with
a non-deterministic and time inhomogeneous compensator. The BSDE generator
function can be non convex and needs not to satisfy global Lipschitz conditions
in the jump integrand. We contribute concrete criteria, that are easy to
verify, for results on existence and uniqueness of bounded solutions to BSDEs
with jumps, and on comparison and a-priori -bounds. Several
examples and counter examples are discussed to shed light on the scope and
applicability of different assumptions, and we provide an overview of major
applications in finance and optimal control.Comment: 28 pages. Added DOI
https://link.springer.com/chapter/10.1007%2F978-3-030-22285-7_1 for final
publication, corrected typo (missing gamma) in example 4.1
Red blood cell glutathione peroxidase activity in female nulligravid and pregnant rats
<p>Abstract</p> <p>Background</p> <p>The alterations of the glutathione peroxidase enzyme complex system occur in physiological conditions such as aging and oxidative stress consequent to strenuous exercise.</p> <p>Methods</p> <p>Authors optimize the spectrophotometric method to measure glutathione peroxidase activity in rat red blood cell membranes.</p> <p>Results</p> <p>The optimization, when applied to age paired rats, both nulligravid and pregnant, shows that pregnancy induces, at seventeen d of pregnancy, an increase of both reactive oxygen substance concentration in red blood cells and membrane glutathione peroxidase activity.</p> <p>Conclusion</p> <p>The glutathione peroxidase increase in erythrocyte membranes is induced by systemic oxidative stress long lasting rat pregnancy.</p
Improvements in survival of the uncemented Nottingham Total Shoulder prosthesis: a prospective comparative study
<p>Abstract</p> <p>Background</p> <p>The uncemented Nottingham Total Shoulder Replacement prosthesis system (Nottingham TSR) was developed from the previous BioModular<sup>® </sup>shoulder prosthesis taking into consideration the causes of the initial implant's failure.</p> <p>We investigated the impact of changes in the design of Nottingham TSR prosthesis on its survivorship rate.</p> <p>Methods</p> <p>Survivorship analyses of three types of uncemented total shoulder arthroplasty prostheses (BioModular<sup>®</sup>, initial Nottingham TSR and current Nottingham TSR systems with 11, 8 and 4 year survivorship data respectively) were compared. All these prostheses were implanted for the treatment of disabling pain in the shoulder due to primary and secondary osteoarthritis or rheumatoid arthritis. Each type of the prosthesis studied was implanted in consecutive group of patients – 90 patients with BioModular<sup>® </sup>system, 103 with the initial Nottingham TSR and 34 patients with the current Nottingham TSR system.</p> <p>The comparison of the annual cumulative survivorship values in the compatible time range between the three groups was done according to the paired <it>t </it>test.</p> <p>Results</p> <p>The 8-year and 11-year survivorship rates for the initially used modified BioModular<sup>® </sup>uncemented prosthesis were relatively low (75.6% and 71.7% respectively) comparing to the reported survivorship of the conventional cemented implants. The 8-year survivorship for the uncemented Nottingham TSR prosthesis was significantly higher (81.8%), but still not in the desired range of above 90%, that is found in other cemented designs. Glenoid component loosening was the main factor of prosthesis failure in both prostheses and mainly occurred in the first 4 postoperative years. The 4-year survivorship of the currently re-designed Nottingham TSR prosthesis, with hydroxylapatite coating of the glenoid baseplate, was significantly higher, 93.1% as compared to 85.1% of the previous Nottingham TSR.</p> <p>Conclusion</p> <p>The initial Nottingham shoulder prosthesis showed significantly higher survivorship than the BioModular<sup>® </sup>uncemented prosthesis, but lower than expected. Subsequently re-designed Nottingham TSR system presented a high short term survivorship rate that encourages its ongoing use</p
Topological data analysis reveals genotype-phenotype relationships in primary ciliary dyskinesia
Background: Primary ciliary dyskinesia (PCD) is a heterogeneous inherited disorder caused by mutations in approximately 50 cilia-related genes. PCD genotype-phenotype relationships have mostly arisen from small case series because existing statistical approaches to investigate relationships have been unsuitable for rare diseases. /
Methods: We applied a topological data analysis (TDA) approach to investigate genotype-phenotype relationships in PCD. Data from separate training and validation cohorts included 396 genetically defined individuals carrying pathogenic variants in PCD genes. To develop the TDA models, twelve clinical and diagnostic variables were included. TDA-driven hypotheses were subsequently tested using traditional statistics. /
Results: Disease severity at diagnosis measured by FEV1 z-score was (i) significantly worse in individuals with CCDC39 mutations compared to other gene mutations and (ii) better in those with DNAH11 mutations; the latter also reported less neonatal respiratory distress. Patients without neonatal respiratory distress had better preserved FEV1 at diagnosis. Individuals with DNAH5 mutations were phenotypically diverse. Cilia ultrastructure and beat pattern defects correlated closely to specific causative gene groups, confirming these tests can be used to support a genetic diagnosis. /
Conclusions: This large scale multi-national study presents PCD as a syndrome with overlapping symptoms and variation in phenotype, according to genotype. TDA modelling confirmed genotype-phenotype relationships reported by smaller studies (e.g. FEV1 worse with CCDC39 mutations), and identified new relationships, including FEV1 preservation with DNAH11 mutations and diversity of severity with DNAH5 mutations
Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain
The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here
Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers
We present a review of the interplay between the evolution of circumstellar
disks and the formation of planets, both from the perspective of theoretical
models and dedicated observations. Based on this, we identify and discuss
fundamental questions concerning the formation and evolution of circumstellar
disks and planets which can be addressed in the near future with optical and
infrared long-baseline interferometers. Furthermore, the importance of
complementary observations with long-baseline (sub)millimeter interferometers
and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics
Review"; The final publication is available at http://www.springerlink.co
Gravitational Waves from Gravitational Collapse
Gravitational wave emission from the gravitational collapse of massive stars
has been studied for more than three decades. Current state of the art
numerical investigations of collapse include those that use progenitors with
realistic angular momentum profiles, properly treat microphysics issues,
account for general relativity, and examine non--axisymmetric effects in three
dimensions. Such simulations predict that gravitational waves from various
phenomena associated with gravitational collapse could be detectable with
advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for
publication in Living Reviews in Relativity (http://www.livingreviews.org
Effects of peripheral nerve injury on parvalbumin expression in adult rat dorsal root ganglion neurons
Background: Parvalbumin (PV) is a calcium binding protein that identifies a subpopulation of proprioceptive dorsal root ganglion (DRG) neurons. Calcitonin gene-related peptide (CGRP) is also expressed in a high proportion of muscle afferents but its relationship to PV is unclear. Little is known of the phenotypic responses of muscle afferents to nerve injury. Sciatic nerve axotomy or L5 spinal nerve ligation and section (SNL) lesions were used to explore these issues in adult rats using immunocytochemistry. Results: In naive animals, the mean PV expression was 25 % of L4 or L5 dorsal root ganglion (DRG) neurons, and this was unchanged 2 weeks after sciatic nerve axotomy. Colocalization studies with the injury marker activating transcription factor 3 (ATF3) showed that approximately 24 % of PV neurons expressed ATF3 after sciatic nerve axotomy suggesting that PV may show a phenotypic switch from injured to uninjured neurons. This possibility was further assessed using the spinal nerve ligation (SNL) injury model where injured and uninjured neurons are located in different DRGs. Two weeks after L5 SNL there was no change in total PV staining and essentially all L5 PV neurons expressed ATF3. Additionally, there was no increase in PV-ir in the adjacent uninjured L4 DRG cells. Co-labelling of DRG neurons revealed that less than 2 % of PV neurons normally expressed CGRP and no colocalization was seen after injury. Conclusion: These experiments clearly show that axotomy does not produce down regulation of PV protein in the DRG. Moreover, this lack of change is not due to a phenotypic switch in PV immunoreactive (ir) neurons, or de novo expression of PV-ir in uninjured neurons after nerve injury. These results further illustrate differences that occur when muscle afferents are injured as compared to cutaneous afferents
- …