19,276 research outputs found

    Topological Winding and Unwinding in Metastable Bose-Einstein Condensates

    Full text link
    Topological winding and unwinding in a quasi-one-dimensional metastable Bose-Einstein condensate are shown to be manipulated by changing the strength of interaction or the frequency of rotation. Exact diagonalization analysis reveals that quasidegenerate states emerge spontaneously near the transition point, allowing a smooth crossover between topologically distinct states. On a mean-field level, the transition is accompanied by formation of grey solitons, or density notches, which serve as an experimental signature of this phenomenon.Comment: 4 pages, 3 figure

    Study of process variables associated with manufacturing hermetically sealed nickel-cadmium cells

    Get PDF
    Formation time, specific gravity of solution, and overcharge amount associated with electrochemical cleaning or formation operation in manufacturing nickel cadmium cell

    Growth of primordial black holes in a universe containing a massless scalar field

    Full text link
    The evolution of primordial black holes in a flat Friedmann universe with a massless scalar field is investigated in fully general relativistic numerical relativity. A primordial black hole is expected to form with a scale comparable to the cosmological apparent horizon, in which case it may go through an initial phase with significant accretion. However, if it is very close to the cosmological apparent horizon size, the accretion is suppressed due to general relativistic effects. In any case, it soon gets smaller than the cosmological horizon and thereafter it can be approximated as an isolated vacuum solution with decaying mass accretion. In this situation the dynamical and inhomogeneous scalar field is typically equivalent to a perfect fluid with a stiff equation of state p=ρp=\rho. The black hole mass never increases by more than a factor of two, despite recent claims that primordial black holes might grow substantially through accreting quintessence. It is found that the gravitational memory scenario, proposed for primordial black holes in Brans-Dicke and scalar-tensor theories of gravity, is highly unphysical.Comment: 24 pages, accepted for publication in Physical Review

    Study of process variables associated with manufacturing hermetically sealed nickel-cadium cells Quarterly report, 23 May - 23 Aug. 1970

    Get PDF
    Separator materials, ceramic to metal seals, cell plate polarization and impregnation processes, and plaque sintering data for study of variables in manufacture of nickel cadmium cell

    Bose-Einstein condensates in standing waves: The cubic nonlinear Schroedinger equation with a periodic potential

    Full text link
    We present a new family of stationary solutions to the cubic nonlinear Schroedinger equation with a Jacobian elliptic function potential. In the limit of a sinusoidal potential our solutions model a dilute gas Bose-Einstein condensate trapped in a standing light wave. Provided the ratio of the height of the variations of the condensate to its DC offset is small enough, both trivial phase and nontrivial phase solutions are shown to be stable. Numerical simulations suggest such stationary states are experimentally observable.Comment: 4 pages, 4 figure

    Quantum phase transitions in the Fermi-Bose Hubbard model

    Full text link
    We propose a multi-band Fermi-Bose Hubbard model with on-site fermion-boson conversion and general filling factor in three dimensions. Such a Hamiltonian models an atomic Fermi gas trapped in a lattice potential and subject to a Feshbach resonance. We solve this model in the two state approximation for paired fermions at zero temperature. The problem then maps onto a coupled Heisenberg spin model. In the limit of large positive and negative detuning, the quantum phase transitions in the Bose Hubbard and Paired-Fermi Hubbard models are correctly reproduced. Near resonance, the Mott states are given by a superposition of the paired-fermion and boson fields and the Mott-superfluid borders go through an avoided crossing in the phase diagram.Comment: 4 pages, 3 figure

    Localized Asymmetric Atomic Matter Waves in Two-Component Bose-Einstein Condensates Coupled with Two Photon Microwave Field

    Full text link
    We investigate localized atomic matter waves in two-component Bose-Einstein condensates coupled by the two photon microwave field. Interestingly, the oscillations of localized atomic matter waves will gradually decay and finally become non-oscillating behavior even if existing coupling field. In particular, atom numbers occupied in two different hyperfine spin states will appear asymmetric occupations after some time evolution.Comment: 4 pages, 4 figure
    corecore