8,204 research outputs found
Doppler cooling of gallium atoms: 2. Simulation in complex multilevel systems
This paper derives a general procedure for the numerical solution of the
Lindblad equations that govern the coherences arising from multicoloured light
interacting with a multilevel system. A systematic approach to finding the
conservative and dissipative terms is derived and applied to the laser cooling
of gallium. An improved numerical method is developed to solve the
time-dependent master equation and results are presented for transient cooling
processes. The method is significantly more robust, efficient and accurate than
the standard method and can be applied to a broad range of atomic and molecular
systems. Radiation pressure forces and the formation of dynamic dark-states are
studied in the gallium isotope 66Ga.Comment: 15 pages, 8 figure
A complete classification of spherically symmetric perfect fluid similarity solutions
We classify all spherically symmetric perfect fluid solutions of Einstein's
equations with equation of state p/mu=a which are self-similar in the sense
that all dimensionless variables depend only upon z=r/t. For a given value of
a, such solutions are described by two parameters and they can be classified in
terms of their behaviour at large and small distances from the origin; this
usually corresponds to large and small values of z but (due to a coordinate
anomaly) it may also correspond to finite z. We base our analysis on the
demonstration that all similarity solutions must be asymptotic to solutions
which depend on either powers of z or powers of lnz. We show that there are
only three similarity solutions which have an exact power-law dependence on z:
the flat Friedmann solution, a static solution and a Kantowski-Sachs solution
(although the latter is probably only physical for a1/5, there are
also two families of solutions which are asymptotically (but not exactly)
Minkowski: the first is asymptotically Minkowski as z tends to infinity and is
described by one parameter; the second is asymptotically Minkowski at a finite
value of z and is described by two parameters. A complete analysis of the dust
solutions is given, since these can be written down explicitly and elucidate
the link between the z>0 and z<0 solutions. Solutions with pressure are then
discussed in detail; these share many of the characteristics of the dust
solutions but they also exhibit new features.Comment: 63 pages. To appear in Physical Review
Stability criterion for self-similar solutions with a scalar field and those with a stiff fluid in general relativity
A stability criterion is derived in general relativity for self-similar
solutions with a scalar field and those with a stiff fluid, which is a perfect
fluid with the equation of state . A wide class of self-similar
solutions turn out to be unstable against kink mode perturbation. According to
the criterion, the Evans-Coleman stiff-fluid solution is unstable and cannot be
a critical solution for the spherical collapse of a stiff fluid if we allow
sufficiently small discontinuity in the density gradient field in the initial
data sets. The self-similar scalar-field solution, which was recently found
numerically by Brady {\it et al.} (2002 {\it Class. Quantum. Grav.} {\bf 19}
6359), is also unstable. Both the flat Friedmann universe with a scalar field
and that with a stiff fluid suffer from kink instability at the particle
horizon scale.Comment: 15 pages, accepted for publication in Classical and Quantum Gravity,
typos correcte
Convergence to a self-similar solution in general relativistic gravitational collapse
We study the spherical collapse of a perfect fluid with an equation of state
by full general relativistic numerical simulations. For 0, it has been known that there exists a general relativistic counterpart
of the Larson-Penston self-similar Newtonian solution. The numerical
simulations strongly suggest that, in the neighborhood of the center, generic
collapse converges to this solution in an approach to a singularity and that
self-similar solutions other than this solution, including a ``critical
solution'' in the black hole critical behavior, are relevant only when the
parameters which parametrize initial data are fine-tuned. This result is
supported by a mode analysis on the pertinent self-similar solutions. Since a
naked singularity forms in the general relativistic Larson-Penston solution for
0, this will be the most serious known counterexample against
cosmic censorship. It also provides strong evidence for the self-similarity
hypothesis in general relativistic gravitational collapse. The direct
consequence is that critical phenomena will be observed in the collapse of
isothermal gas in Newton gravity, and the critical exponent will be
given by , though the order parameter cannot be the black
hole mass.Comment: 22 pages, 15 figures, accepted for publication in Physical Review D,
reference added, typos correcte
Tunable tunneling: An application of stationary states of Bose-Einstein condensates in traps of finite depth
The fundamental question of how Bose-Einstein condensates tunnel into a
barrier is addressed. The cubic nonlinear Schrodinger equation with a finite
square well potential, which models a Bose-Einstein condensate in a
quasi-one-dimensional trap of finite depth, is solved for the complete set of
localized and partially localized stationary states, which the former evolve
into when the nonlinearity is increased. An immediate application of these
different solution types is tunable tunneling. Magnetically tunable Feshbach
resonances can change the scattering length of certain Bose-condensed atoms,
such as Rb, by several orders of magnitude, including the sign, and
thereby also change the mean field nonlinearity term of the equation and the
tunneling of the wavefunction. We find both linear-type localized solutions and
uniquely nonlinear partially localized solutions where the tails of the
wavefunction become nonzero at infinity when the nonlinearity increases. The
tunneling of the wavefunction into the non-classical regime and thus its
localization therefore becomes an external experimentally controllable
parameter.Comment: 11 pages, 5 figure
What have we already learned from the CMB?
The COBE satellite, and the DMR experiment in particular, was extraordinarily
successful. However, the DMR results were announced about 7 years ago, during
which time a great deal more has been learned about anisotropies in the Cosmic
Microwave Background (CMB). The CMB experiments currently being designed and
built, including long-duration balloons, interferometers, and two space
missions, promise to address several fundamental cosmological issues. We
present our evaluation of what we already know, what we are beginning to learn
now, and what the future may bring.Comment: 20 pages, 3 figures. Changes to match version accepted by PAS
Stationary solutions of the one-dimensional nonlinear Schroedinger equation: II. Case of attractive nonlinearity
All stationary solutions to the one-dimensional nonlinear Schroedinger
equation under box or periodic boundary conditions are presented in analytic
form for the case of attractive nonlinearity. A companion paper has treated the
repulsive case. Our solutions take the form of bounded, quantized, stationary
trains of bright solitons. Among them are two uniquely nonlinear classes of
nodeless solutions, whose properties and physical meaning are discussed in
detail. The full set of symmetry-breaking stationary states are described by
the character tables from the theory of point groups. We make
experimental predictions for the Bose-Einstein condensate and show that, though
these are the analog of some of the simplest problems in linear quantum
mechanics, nonlinearity introduces new and surprising phenomena.Comment: 11 pages, 9 figures -- revised versio
New constraints on primordial black holes abundance from femtolensing of gamma-ray bursts
The abundance of primordial black holes is currently significantly
constrained in a wide range of masses. The weakest limits are established for
the small mass objects, where the small intensity of the associated physical
phenomenon provides a challenge for current experiments. We used gamma- ray
bursts with known redshifts detected by the Fermi Gamma-ray Burst Monitor (GBM)
to search for the femtolensing effects caused by compact objects. The lack of
femtolensing detection in the GBM data provides new evidence that primordial
black holes in the mass range 5 \times 10^{17} - 10^{20} g do not constitute a
major fraction of dark matter.Comment: 7 pages, 6 figures, submitted to Physical Review
Photoassociative creation of ultracold heteronuclear 6Li40K* molecules
We investigate the formation of weakly bound, electronically excited,
heteronuclear 6Li40K* molecules by single-photon photoassociation in a
magneto-optical trap. We performed trap loss spectroscopy within a range of 325
GHz below the Li(2S_(1/2))+K(4P_(3/2)) and Li(2S_(1/2))+K(4P_(1/2)) asymptotic
states and observed more than 60 resonances, which we identify as rovibrational
levels of 7 of 8 attractive long-range molecular potentials. The long-range
dispersion coefficients and rotational constants are derived. We find large
molecule formation rates of up to ~3.5x10^7s^(-1), which are shown to be
comparable to those for homonuclear 40K_2*. Using a theoretical model we infer
decay rates to the deeply bound electronic ground-state vibrational level
X^1\Sigma^+(v'=3) of ~5x10^4s^(-1). Our results pave the way for the production
of ultracold bosonic ground-state 6Li40K molecules which exhibit a large
intrinsic permanent electric dipole moment.Comment: 6 pages, 4 figures, submitted to EP
Cosmological expansion and local physics
The interplay between cosmological expansion and local attraction in a
gravitationally bound system is revisited in various regimes. First, weakly
gravitating Newtonian systems are considered, followed by various exact
solutions describing a relativistic central object embedded in a Friedmann
universe. It is shown that the ``all or nothing'' behaviour recently discovered
(i.e., weakly coupled systems are comoving while strongly coupled ones resist
the cosmic expansion) is limited to the de Sitter background. New exact
solutions are presented which describe black holes perfectly comoving with a
generic Friedmann universe. The possibility of violating cosmic censorship for
a black hole approaching the Big Rip is also discussed.Comment: 17 pages, LaTeX, to appear in Phys. Rev.
- …