18,319 research outputs found

    Persistence of black holes through a cosmological bounce

    Full text link
    We discuss whether black holes could persist in a universe which recollapses and then bounces into a new expansion phase. Whether the bounce is of classical or quantum gravitational origin, such cosmological models are of great current interest. In particular, we investigate the mass range in which black holes might survive a bounce and ways of differentiating observationally between black holes formed just after and just before the last bounce. We also discuss the consequences of the universe going through a sequence of dimensional changes as it passes through a bounce.Comment: 8 pages, 1 figur

    Holes in the walls: primordial black holes as a solution to the cosmological domain wall problem

    Full text link
    We propose a scenario in which the cosmological domain wall and monopole problems are solved without any fine tuning of the initial conditions or parameters in the Lagrangian of an underlying filed theory. In this scenario domain walls sweep out (unwind) the monopoles from the early universe, then the fast primordial black holes perforate the domain walls, change their topology and destroy them. We find further that the (old vacuum) energy density released from the domain walls could alleviate but not solve the cosmological flatness problem.Comment: References added; Published in Phys. Rev.

    Strong correlation effects in single-wall carbon nanotubes

    Full text link
    We present an overview of strong correlations in single-wall carbon nanotubes, and an introduction to the techniques used to study them theoretically. We concentrate on zigzag nanotubes, although universality dictates that much ofthe theory can also be applied to armchair or chiral nanotubes. We show how interaction effects lead to exotic low energy properties and discuss future directions for studies on correlation effects in nanotubes

    Anisotropic dielectric function in polar nano-regions of relaxor ferroelectrics

    Get PDF
    The paper suggests to treat the infrared reflectivity spectra of single crystal perovskite relaxors as fine-grained ferroelectric ceramics: locally frozen polarization makes the dielectric function strongly anisotropic in the phonon frequency range and the random orientation of the polarization at nano-scopic scale requires to take into account the inhomogeneous depolarization field. Employing a simple effective medium approximation (Bruggeman symmetrical formula) to dielectric function describing the polar optic modes as damped harmonic oscillators turns out to be sufficient for reproducing all principal features of room temperature reflectivity of PMN. One of the reflectivity bands is identified as a geometrical resonance entirely related to the nanoscale polarization inhomogeneity. The approach provides a general guide for systematic determination of the polar mode frequencies split by the inhomogeneous polarization at nanometer scale.Comment: 5 pages, 2 figure

    A pulsed atomic soliton laser

    Full text link
    It is shown that simultaneously changing the scattering length of an elongated, harmonically trapped Bose-Einstein condensate from positive to negative and inverting the axial portion of the trap, so that it becomes expulsive, results in a train of self-coherent solitonic pulses. Each pulse is itself a non-dispersive attractive Bose-Einstein condensate that rapidly self-cools. The axial trap functions as a waveguide. The solitons can be made robustly stable with the right choice of trap geometry, number of atoms, and interaction strength. Theoretical and numerical evidence suggests that such a pulsed atomic soliton laser can be made in present experiments.Comment: 11 pages, 4 figure

    Bose-Einstein condensates with attractive interactions on a ring

    Full text link
    Considering an effectively attractive quasi-one-dimensional Bose-Einstein condensate of atoms confined in a toroidal trap, we find that the system undergoes a phase transition from a uniform to a localized state, as the magnitude of the coupling constant increases. Both the mean-field approximation, as well as a diagonalization scheme are used to attack the problem.Comment: 4 pages, 4 ps figures, RevTex, typographic errors correcte

    Deep subcutaneous application of poly-L-lactic acid as a filler for facial lipoatrophy in HIV-infected patients

    Get PDF
    Introduction: Facial lipoatrophy is a crucial problem of HIV-infected patients undergoing highly active antiretroviral therapy (HAART). Poly-L-lactic acid (PLA), provided as New-Fill(R)/Sculptra(TM), is known as one possible treatment option. In 2004 PLA was approved by the FDA as Sculptra(TM) for the treatment of lipoatrophy of the face in HIV-infected patients. While the first trials demonstrated relevant efficacy, this was to some extent linked to unwanted effects. As the depth of injection was considered relevant in this context, the application modalities of the preparation were changed. The preparation was to be injected more deeply into subcutaneous tissue, after increased dilution. Material and Methods: To test this approach we performed a pilot study following the new recommendations in 14 patients. Results: While the efficacy turned out to be about the same, tolerability was markedly improved. The increase in facial dermal thickness was particularly obvious in those patients who had suffered from lipoatrophy for a comparatively small period of time. Conclusion: With the new recommendations to dilute PLA powder and to inject it into the deeper subcutaneous tissue nodule formation is a minor problem. However, good treatment results can only be achieved if lipoatrophy is not too intense; treatment intervals should be about 2 - 3 weeks. Copyright (C) 2005 S. Karger AG, Basel

    Spontaneous soliton formation and modulational instability in Bose-Einstein condensates

    Full text link
    The dynamics of an elongated attractive Bose-Einstein condensate in an axisymmetric harmonic trap is studied. It is shown that density fringes caused by self-interference of the condensate order parameter seed modulational instability. The latter has novel features in contradistinction to the usual homogeneous case known from nonlinear fiber optics. Several open questions in the interpretation of the recent creation of the first matter-wave bright soliton train [Strecker {\it et al.} Nature {\bf 417} 150 (2002)] are addressed. It is shown that primary transverse collapse, followed by secondary collapse induced by soliton--soliton interactions, produce bursts of hot atoms at different time scales.Comment: 4 pages, 3 figures. Phys. Rev. Lett. in pres

    Far-Infrared Conductivity Measurements of Pair Breaking in Superconducting Nb0.5_{0.5}Ti0.5_{0.5}N Thin Films Induced by an External Magnetic Field

    Full text link
    We report the complex optical conductivity of a superconducting thin-film of Nb0.5_{0.5}Ti0.5_{0.5}N in an external magnetic field. The field was applied parallel to the film surface and the conductivity extracted from far-infrared transmission and reflection measurements. The real part shows the superconducting gap, which we observe to be suppressed by the applied magnetic field. We compare our results with the pair-breaking theory of Abrikosov and Gor'kov and confirm directly the theory's validity for the optical conductivity.Comment: 4 pages, 3 figure
    corecore