1,065 research outputs found

    Impact of the solar wind dynamic pressure on the field‐aligned currents in the magnetotail: Cluster observation

    Get PDF
    We statistically investigate the influence of the solar wind dynamic pressure (SW Pdyn) on the field-aligned currents (FACs) in the magnetotail with 1492 FAC cases from July to October in 2001 and 2004, which covers 74 Cluster crossings of the plasma sheet boundary layer (PSBL) in both storm time and non-storm time. The FAC density in the magnetotail is derived from the magnetic field data with the four-point measurement of Cluster, and the SW Pdyn is taken from ACE data. The results indicate the FAC density becomes stronger with increasing SW Pdyn. The statistics show that the FAC occurrence increased monotonically with SW Pdyn in the three levels (Weak: SW Pdyn5 nPa). The FAC density increased with increasing SW Pdyn, while its footprint (invariant latitude, ILAT) in the polar region decreased with increasing SW Pdyn. The response of the FAC to SW Pdyn in the magnetotail had a north-south hemispheric asymmetry. The FAC density had a better correlation with SW Pdyn in the Northern hemisphere, while the footprint had a better correlation with SW Pdyn in the Southern hemisphere. Possible underlying mechanisms for our results are analyzed and discussed. However, it requires more observations and simulation studies to find out the mechanism of north-south asymmetry

    HIV subtype and drug resistance patterns among drug naïve persons in Jos, Nigeria

    Get PDF
    To determine HIV-1 subtypes and antiretroviral drug resistance mutations for 16 infected, pregnant women in Jos, Nigeria, part of pol (1040 bp) was amplified from patient PBMC DNA, sequenced andanalyzed. Eight of the samples were subtype G, three were CRF02_AG and 2 were unique recombinant forms (URF) between G and CRF02_AG. The remaining consisted of 3 different strains: one was subtypeC, and the other 2 were unrelated URF. Nearly full-length genome sequences were completed for 6 of the strains: 4 subtype G and 2 CRF02_AG. In the 14 drug-naïve subjects, no primary resistance-associated mutations were found, but secondary mutations were identified in 7 different codons of the gene coding for protease: PR K20I, M36I, L63A/P/V, V82I, L10M/I and I93L. In addition, the K238R mutation was identified in the reverse transcriptase gene of 3 viruses. The PR K20I and M36I mutations occurred in all of the strains, and the L10M and V82I mutations occurred only in subtype G. The mutation, I93L, was carried by subtype C viruses. Two of the women that had prior niverapine treatment, had primary resistance-associated mutations, RT M184V and K103N, archived in their proviral DNA several months after treatment cessation. The study reports a predominance of clade G and CRF02_AG, and provides many more examples of nearly full-length genome sequences for subtype G viruses from Nigeria. The ubiquitous presence of PI secondary resistance-associated mutations, as well as primary resistanceassociatedmutations in 2 previously treated women, underscores the need to ensure adherence compliance to treatment

    Coherent Signal Amplification in Bistable Nanomechanical Oscillators by Stochastic Resonance

    Full text link
    Stochastic resonance is a counter-intuitive concept[1,2], ; the addition of noise to a noisy system induces coherent amplification of its response. First suggested as a mechanism for the cyclic recurrence of ice ages, stochastic resonance has been seen in a wide variety of macroscopic physical systems: bistable ring lasers[3], SQUIDs[4,5], magnetoelastic ribbons[6], and neurophysiological systems such as the receptors in crickets[7] and crayfish[8]. Although it is fundamentally important as a mechanism of coherent signal amplification, stochastic resonance is yet to be observed in nanoscale systems. Here we report the observation of stochastic resonance in bistable nanomechanical silicon oscillators, which can play an important role in the realization of controllable high-speed nanomechanical memory cells. Our nanomechanical systems were excited into a dynamic bistable state and modulated in order to induce controllable switching; the addition of white noise showed a marked amplification of the signal strength. Stochastic resonance in nanomechanical systems paves the way for exploring macroscopic quantum coherence and tunneling, and controlling nanoscale quantum systems for their eventual use as robust quantum logic devices.Comment: 18 pages, 4 figure

    First report of an HIV-1 triple recombinant of subtypes B, C and F in Buenos Aires, Argentina

    Get PDF
    We describe the genetic diversity of currently transmitted strains of HIV-1 in men who have sex with men (MSM) in Buenos Aires, Argentina between 2000 and 2004. Nearly full-length sequence analysis of 10 samples showed that 6 were subtype B, 3 were BF recombinant and 1 was a triple recombinant of subtypes B, C and F. The 3 BF recombinants were 3 different unique recombinant forms. Full genome analysis of one strain that was subtype F when sequenced in pol was found to be a triple recombinant. Gag and pol were predominantly subtype F, while gp120 was subtype B; there were regions of subtype C interspersed throughout. The young man infected with this strain reported multiple sexual partners and sero-converted between May and November of 2004. This study reported for the first time the full genome analysis of a triple recombinant between subtypes B, C and F, that combines in one virus the three most common subtypes in South America

    HIV-1 recombinants with multiple parental strains in low-prevalence, remote regions of Cameroon: Evolutionary relics?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The HIV pandemic disseminated globally from Central West Africa, beginning in the second half of the twentieth century. To elucidate the virologic origins of the pandemic, a cross-sectional study was conducted of the genetic diversity of HIV-1 strains in villagers in 14 remote locations in Cameroon and in hospitalized and STI patients. DNA extracted from PBMC was PCR amplified from HIV(+) subjects. Partial <it>pol </it>amplicons (N = 164) and nearly full virus genomes (N = 78) were sequenced. Among the 3956 rural villagers studied, the prevalence of HIV infection was 4.9%; among the hospitalized and clinic patients, it was 8.6%.</p> <p>Results</p> <p>Virus genotypes fell into two distinctive groups. A majority of the genotyped strains (109/164) were the circulating recombinant form (CRF) known to be endemic in West Africa and Central West Africa, CRF02_AG. The second most common genetic form (9/164) was the recently described CRF22_01A1, and the rest were a collection of 4 different subtypes (A2, D, F2, G) and 6 different CRFs (-01, -11, -13, -18, -25, -37). Remarkably, 10.4% of HIV-1 genomes detected (17/164) were heretofore undescribed unique recombinant forms (URF) present in only a single person. Nearly full genome sequencing was completed for 78 of the viruses of interest. HIV genetic diversity was commonplace in rural villages: 12 villages each had at least one newly detected URF, and 9 villages had two or more.</p> <p>Conclusions</p> <p>These results show that while CRF02_AG dominated the HIV strains in the rural villages, the remainder of the viruses had tremendous genetic diversity. Between the trans-species transmission of SIV<sub>cpz </sub>and the dispersal of pandemic HIV-1, there was a time when we hypothesize that nascent HIV-1 was spreading, but only to a limited extent, recombining with other local HIV-1, creating a large variety of recombinants. When one of those recombinants began to spread widely (i.e. became epidemic), it was recognized as a subtype. We hypothesize that the viruses in these remote Cameroon villages may represent that pre-epidemic stage of viral evolution.</p

    The predominance of Human Immunodeficiency Virus type 1 (HIV-1) circulating recombinant form 02 (CRF02_AG) in West Central Africa may be related to its replicative fitness

    Get PDF
    BACKGROUND: CRF02_AG is the predominant HIV strain circulating in West and West Central Africa. The aim of this study was to test whether this predominance is associated with a higher in vitro replicative fitness relative to parental subtype A and G viruses. Primary HIV-1 isolates (10 CRF02_AG, 5 subtype A and 5 subtype G) were obtained from a well-described Cameroonian cohort. Growth competition experiments were carried out at equal multiplicity of infection in activated T cells and monocyte-derived dendritic cells (MO-DC) in parallel. RESULTS: Dual infection/competition experiments in activated T cells clearly indicated that CRF02_AG isolates had a significant replication advantage over the subtype A and subtype G viruses. The higher fitness of CRF02_AG was evident for isolates from patients with CD4+ T cell counts >200 cells/μL (non-AIDS) or CD4+ T cell counts <200 cells/μL (AIDS), and was independent of the co-receptor tropism. In MO-DC cultures, CRF02_AG isolates showed a slightly but not significantly higher replication advantage compared to subtype A or G isolates. CONCLUSION: We observed a higher ex vivo replicative fitness of CRF02_AG isolates compared to subtype A and G viruses from the same geographic region and showed that this was independent of the co-receptor tropism and irrespective of high or low CD4+ T cell count. This advantage in replicative fitness may contribute to the dominant spread of CRF02_AG over A and G subtypes in West and West Central Africa

    The role of recombination in the emergence of a complex and dynamic HIV epidemic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inter-subtype recombinants dominate the HIV epidemics in three geographical regions. To better understand the role of HIV recombinants in shaping the current HIV epidemic, we here present the results of a large-scale subtyping analysis of 9435 HIV-1 sequences that involve subtypes A, B, C, G, F and the epidemiologically important recombinants derived from three continents.</p> <p>Results</p> <p>The circulating recombinant form CRF02_AG, common in West Central Africa, appears to result from recombination events that occurred early in the divergence between subtypes A and G, followed by additional recent recombination events that contribute to the breakpoint pattern defining the current recombinant lineage. This finding also corrects a recent claim that G is a recombinant and a descendant of CRF02, which was suggested to be a pure subtype. The BC and BF recombinants in China and South America, respectively, are derived from recent recombination between contemporary parental lineages. Shared breakpoints in South America BF recombinants indicate that the HIV-1 epidemics in Argentina and Brazil are not independent. Therefore, the contemporary HIV-1 epidemic has recombinant lineages of both ancient and more recent origins.</p> <p>Conclusions</p> <p>Taken together, we show that these recombinant lineages, which are highly prevalent in the current HIV epidemic, are a mixture of ancient and recent recombination. The HIV pandemic is moving towards having increasing complexity and higher prevalence of recombinant forms, sometimes existing as "families" of related forms. We find that the classification of some CRF designations need to be revised as a consequence of (1) an estimated > 5% error in the original subtype assignments deposited in the Los Alamos sequence database; (2) an increasing number of CRFs are defined while they do not readily fit into groupings for molecular epidemiology and vaccine design; and (3) a dynamic HIV epidemic context.</p

    Smc5/6: a link between DNA repair and unidirectional replication?

    Get PDF
    Of the three structural maintenance of chromosome (SMC) complexes, two directly regulate chromosome dynamics. The third, Smc5/6, functions mainly in homologous recombination and in completing DNA replication. The literature suggests that Smc5/6 coordinates DNA repair, in part through post-translational modification of uncharacterized target proteins that can dictate their subcellular localization, and that Smc5/6 also functions to establish DNA-damage-dependent cohesion. A nucleolar-specific Smc5/6 function has been proposed because Smc5/6 yeast mutants display penetrant phenotypes of ribosomal DNA (rDNA) instability. rDNA repeats are replicated unidirectionally. Here, we propose that unidirectional replication, combined with global Smc5/6 functions, can explain the apparent rDNA specificity
    corecore