
1.  Introduction
The interplanetary magnetic field (IMF) and the solar wind control physical processes in the magnetosphere, such 
as magnetic reconnection in the dayside magnetopause and in the magnetotail (Dungey, 1961; Nagai et al., 2005; 
Nishida, 1983), wave and instability (Hatch et al., 2017; Kavosi & Raeder, 2015; Song et al., 1993), geomagnetic 
activity (Arnoldy, 1971; Davis et al., 1997; McPherron et al., 1988; Schatten & Wilcox, 1967), as the main ef-
fects. The large scale field-aligned current (FAC) plays an important role in transferring the solar wind momen-
tum and energy into the magnetosphere and ionosphere. The FAC is involved in many important physical pro-
cesses, including magnetic reconnection (Hones, 1979; Ma & Otto, 2013; Scholer & Otto, 1991), field-aligned 
particle acceleration (Choy et al., 1971; Morooka et al., 2004; Shi et al., 2014), development of the substorm cur-
rent wedge (Hesse & Birn, 1991; Pytte et al., 1976), and auroral activity (Elphic et al., 1998; Xiong et al., 2014).

In previous studies, many scholars focused on the relationship between the IMF components and the FAC. Based 
on the ground-based radar and low orbit satellite data, the FACs at low altitude (mainly including Region 1, 
Region 2, Region 0, and cusp FAC) have been studied in detail. Iijima and Shibaji (1987) found that the dawn-
dusk asymmetry of the FACs are caused by the variation of IMF By. Yamauchi and Araki (1989) reported that 
the IMF By-dependent cusp region FAC was located around 86–87° invariant latitude (ILAT) near local noon. 
Taguchi (1992) found that the intensity of the FACs near the midnight auroral oval increased with IMF By during 
northward IMF. The IMF Bz is also an important controlling factor besides the IMF By. Papitashvili et al. (2001) 
provided the distributions of FAC in different IMF Bz conditions. Juusola et al. (2009) found during southward 
IMF that an increasing FAC intensity corresponded clearly to an increasing |Bz|. Gjerloev et al. (2011) found that 
the nightside FACs showed a clear dependence on IMF Bz.

It was also found that the FACs associated with Joule heating can be affected by the IMF clock angle or cone 
angle (Li et  al.,  2011). The field lines along which the nightside field-aligned currents flow are mapped to 
the magnetospheric tail, thus the FAC observations in the magnetotail also show the IMF dependence. Cheng 
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et al. (2014) found that the IMF By played a very important role in controlling the FAC direction. There was a 
clear north–south hemispheric asymmetry of the polarity of the FACs for both signs of IMF By, and this asym-
metry of the polarity was more distinct when IMF By was positive. Further research showed that the occurrence, 
density, and the location of the footprint of the FAC were depending on the IMF clock and cone angle (Cheng 
et al., 2013, 2018).

In fact, besides the IMF components, the solar wind parameters, such as velocity and dynamic pressure are 
also important controlling factors. Some previous studies have shown that the location of the magnetopause 
(Shue et al., 1998), geomagnetic pulsations (Chi et al., 1998), the EMIC waves in the magnetosphere (Saikin 
et al., 2016), the radial distance of the magnetic reconnection site in the magnetotail (Nagai et al., 2005), and geo-
magnetic Dst index (Zhao et al., 2011) have close relationships with solar wind dynamic pressure or velocity. The 
large scale FAC in the entire solar wind-magnetosphere-ionosphere interaction process should also be influenced 
by solar wind. The relationship between FAC and si has been studied using data from satellites at low orbit. Iijima 
and Potemra (1982) investigated the relationship between the Region 1 FAC and SW Pdyn. However, they did not 
examine the Region 2 FAC. Nakano et al. (2009) statistically studied the relationship between the SW Pdyn and 
the intensity of the Region 2 FAC, and they found that Region 2 FAC intensity depends on the SW Pdyn during 
magnetic storms. During non-storm times, however, the correlation is weak. Wang et al. (2006) suggested that the 
FAC intensity depends on the SW Pdyn during storm time. However, they did not distinguish between the Region 1 
FAC and the Region 2 FAC. Wing et al. (2011) distinguished between Region 1 and Region 2 FAC, and presented 
the relationship between the density of FAC and solar wind velocity. It is generally considered that the Region 1 
FACs map to the outermost part of magnetotail region, whereas the Region 2 FACs map to regions of the plasma 
sheet closer to the Earth. The FAC in the magnetotail is connected with that in the polar region through the mag-
netic field lines (Wild et al., 2004) and it is very important for the magnetosphere-ionosphere coupling which is 
influenced by solar wind. However, there is no research on the relationship between the magnetotail FAC and SW 
Pdyn, and this paper presents a study on this problem.

In order to investigate the relations between the characteristics of magnetotail FACs and the solar wind, we 
statistically examined the relationship between the solar wind dynamic pressure and the FAC, as derived from 
magnetic field measurements by the four Cluster spacecraft. The results show that the SW Pdyn has a controlling 
role on the FAC in the magnetotail. We also discussed the physical mechanism involved.

2.  Data and Method
In this study, data of the magnetic field, ions, and electrons, respectively, were taken by the Fluxgate Magnetome-
ter (FGM) (Balogh et al., 1997), the Cluster Ion Spectrometry (CIS) (Rème et al., 2001), and the Plasma Electron 
And Current Experiment (PEACE) (Johnstone et al., 1997) instruments onboard the Cluster spacecraft. The FAC 
density can be calculated using magnetic field data from the four Cluster spacecraft by the “curlometer” method 
(Dunlop et al., 1988). The ion and electron data, combined with the magnetic field data, were used to calculate 
the plasma β (the ratio of plasma pressure to magnetic pressure). The corresponding IMF, solar wind, and geo-
magnetic indices (AE, AL, and Dst) were obtained from the OMNI database.

Cluster consists of four identical spacecraft that fly in a tetrahedral configuration. The apogee of the four Clus-
ter spacecraft is about 19.6 Earth radii (RE) and the orbital period is about 57 hr. From July to October in 2001 
and 2004, Cluster spends about 60 days crossing the PSBL, and the separation between each Cluster spacecraft 
was about 2,000 km (1,000 km) in the magnetotail in 2001 (2004). The estimate of the current density inside 
the volume defined by the tetrahedron relies on the assumption that the magnetic field varies linearly between 
two spacecraft. When the separation between spacecraft is too large, the linear approximation is not accurate 
or wrong, and it will be not suitable to use the "Curlometer" method. The small separation satisfies the linear 
approximation of magnetic field gradient, but we mainly study the large-scale FAC structure in the magneto-
tail. Therefore, we selected the two years (2001 and 2004) when the separations between two spacecraft were 
2,000 km and 1,000 km for analysis. In this case, the separation between two spacecraft is basically equivalent 
to the scale of FAC in magnetotail. Here we should note that the FAC density calculated by the "Curlometer" 
method represents the average value.

In general, for studying the FAC in the magnetotail, the search algorithms always choose the FAC case by de-
fining their density and interval, then use the cases to perform statistics and analysis (Cheng et al., 2013; Ohtani 
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et al., 1988; Shi et al., 2010; Ueno et al., 2002). In this study, the density of FAC case is defined as being larger 
than 3 pT/km or 2.38 nA/m2 (1 nA/m2 = 1.26 pT/km), whereby the current in units of pT/km has been obtained 
directly from the calculation with the “curlometer” technique. For small FAC density, it will merge into errors or 
background noise that should not be steady. In this case, we cannot identify the real small FAC density. So we can 
only study on the FAC case with a big density. In general, researchers have to prescribe a threshold to choose the 
FAC case to do analysis. Based on the previous magnetotail FAC study (Ohtani et al. (1988) used the minimum 
limit which the FAC density has been set as 3 mA/m), and combined with the characteristics of FAC density 
calculated from Cluster data (Shi et al., 2010), the density of a typical FAC density in this study was finally de-
termined to be 3 pT/km. The minimum time interval between two neighboring FAC cases is 5 min. The choice of 
the 5 min interval is related to the scale of a single FAC case. According to the speed of the Cluster satellite, the 
distance of the Cluster passing through a FAC sheet is exactly 1,000–2,000 km. Further, if there are two or more 
FACs with densities above 3 pT/km within 5 min, the largest one was chosen.

In the magnetotail, the FAC mainly exists in the PSBL. We used plasma ß to identify the plasma sheet (PS) 
(β  >  1), PSBL (0.01 ≤ β  ≤  1), and the lobe region (β  <  0.01) (Ueno et al., 2002). In order to correlate the 
IMF and solar wind (64s average data) data to the FAC cases we apply a two-step approach as usual. At first, 
the time shift between ACE satellite to the average position of dayside magnetopause (10 RE) is defined as the X 
component (XGSE) of ACE spacecraft position minus 10 RE in GSE coordinates, then divided by the magnitude of 
solar wind speed measured (VxGSE) along the GSE X direction. (Time shift  =  (XGSE-10)/VxGSE  ×  106.2  ×  (−1), 
in the equation, the unit of XGSE is RE, the unit of VxGSE is km/s and the unit of Time shift is minute). It is a very 
simplified approach that may introduce some errors. However, except for extreme excursions in solar wind pa-
rameters, the bow shock and magnetopause locations will not move enough to introduce significant uncertainty 
in the timing of arrival of solar wind structures observed upstream. Secondly, we determine the delay from the 
average position of dayside magnetopause to the magnetotail. Some authors added a fixed period of time for the 
inner nightside magnetosphere to respond to the IMF (Cowley & Lockwood, 1992; Østgaard et al., 2005). In 
order to examine any IMF influence on the inner part of nightside magnetosphere, they have assumed a planar 
propagation of the solar wind and then added 10 min for the inner nightside magnetosphere to respond to the IMF, 
the uncertainties of the time shifts are in the range of 0–10 min (Collier et al., 1998; Østgaard et al., 2005). The ef-
fect of the solar wind interaction to the magnetopause will be quickly propagate to the magnetotail. In most FAC 
cases, the time shift could be roughly considered as 0. In a few FAC cases, SW Pdyn showed some fluctuations 
within a ± 5 min interval. To combine the location and scale of the FAC, the maximum time shift is no more than 
5 min. In addition, we used the International Geomagnetic Reference Field (IGRF) model (internal) and the Tsy-
ganenko 96 (T96) model (external) (Tsyganenko & Stern, 1996) to trace all FAC cases along the magnetic field 
lines from the magnetotail to the polar ionosphere, and obtained the ILAT and the magnetic local time (MLT).

Figure 1 shows the FAC cases with their corresponding SW Pdyn when the Cluster spacecraft were crossing the 
PSBL in the magnetotail. The top panel of Figure 1 shows a typical example that occurred in non-storm time on 
17 July 2001. The bottom panel of Figure 1 shows an example that occurred in storm time on 17 August 2001. 
The black dotted line denotes the time shift that the IMF from ACE observation influence on the magnetotail, 
the blue line denotes the solar wind dynamic pressure and the black line denotes the density of FACs. We did not 
distinguish between the earthward FAC and tailward FAC. On 17 July 2001, from 06:30 UT to 08:40 UT, Cluster 
detected a total of 12 FAC cases. In this period, the minimum value of Dst was only −18 nT, and the maximum 
value of AE was 184 nT. The Dst values indicate that no storm occurred. The SW Pdyn was also weak, the maxi-
mum value was only about 2.3 nPa. However, the top panel of Figure 1 shows clearly that the variation of FAC 
density was well correlated with the SW Pdyn. On 17 August 2001, a strong storm occurred with the minimum 
Dst value of −105 nT. The maximum value of AE was more than 1,000 nT and we confirmed that a substorm had 
happened at that time. Cluster crossed the PSBL from the sudden commencement to the early main phase of the 
storm (09:00 UT to 15:40 UT) and detected a total of 16 FAC cases. From the bottom panel of Figure 1 we can 
see that both the SW Pdyn and FAC density show a strong disturbance, the maximum value of SW Pdyn is more 
than 15 nPa and the maximum FAC density is about 17 nA/m2, the trend of FAC density was consistent with the 
SW Pdyn. Figure 1 just shows typical example cases in storm time and non-storm time. Based on this idea, we 
performed a statistical analysis of the relationship between the FAC cases and SW Pdyn.

According to the selection criteria mentioned above, 1,492 FAC cases in the magnetotail were selected during 
Cluster crossings from July to October in 2001 and 2004. All the FAC cases were distributed in 74 times of 
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plasma sheet crossing (37 times in 2001 and 2004, respectively). The number of FAC cases observed during each 
crossing were different, from several to dozens. Then we matched the SW Pdyn to every FAC case and mapped it 
along the field line to the polar region at altitude of 100 km. Thereafter we performed a statistical analysis on the 
FAC occurrence, density, and footprint as functions of SW Pdyn.

3.  Statistical Results
3.1.  The Relationship Between the Frequency of Occurrence of FAC and SW Pdyn

The selected 1,492 FAC cases include tailward and earthward FAC ones, as well as northern and southern hemi-
spheric cases. Left two panels in Figure 2 show the distributions of 1,492 FAC cases in the magnetotail in the X–Y 
plane (top) and X–Z plane (bottom) in the GSM coordinate system and the right panel shows the distribution of 
their mapping footprints in the polar region. The Tsyganenko T96 model is used for mapping. The red points de-
note the earthward FACs and the blue points denote the tailward ones. The locations of the FAC cases are limited 
within YGSM from −15 RE to 15 RE (∼4 hr MLT around midnight). From Figure 2 we can see that the FAC cases 
and footprints seem to distribute uniformly in the magnetotail (X–Y or X–Z plane in the GSM coordinate) and in 
the polar region, respectively. The results of a detailed analysis will be shown later.

The relationship between the occurrence of FAC and SW Pdyn was studied first. The top panel of Figure 3 shows 
the number of FAC cases (black circles) and total time of the observation (blue squares) under the three different 
SW Pdyn levels (Weak: SW Pdyn < 2 nPa; Medium: 2 nPa ≤ SW Pdyn ≤ 5 nPa; Strong: SW Pdyn > 5 nPa). The 
bottom panel of Figure 3 shows the normalized occurrence (black squares) with the three Pdyn levels. When SW 
Pdyn < 2 nPa, the total observation time (During the period of plasma sheet crossing) was 100,850 min and 746 
FAC cases were observed. Here we define the occurrence as the ratio of the number of FAC cases to the total 
observation time (i.e., 746/100,850 ≈ 7.40 × 10−3/ min). When 2 nPa ≤ SW Pdyn ≤5 nPa, the total observation 
time was 65,392 min and 620 FAC cases were observed, and the occurrence was about 9.48 × 10−3/ min. When 
SW Pdyn > 5 nP, the total observation time was 11,335 min and 126 FAC cases were observed, and the occurrence 

Figure 1.  Two examples of the field-aligned current (FAC) cases with their corresponding solar wind dynamic pressure (SW 
Pdyn) when the Cluster spacecraft were crossing the PSBL in the magnetotail in non-storm time (the top panel) and storm 
time (the bottom panel), respectively. The black dotted line denotes the time shift that the interplanetary magnetic field (IMF) 
from ACE observation influence on the magnetotail, the blue line denotes the solar wind dynamic pressure and the black line 
denotes the density of FACs.
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was about 11.11 × 10−3/ min. For comparison purposes, the occurrences were normalized and they were 26.4%, 
33.9% and 39.7%, respectively.

From the top panel of Figure 3 we can see that the number of FAC cases were 746, 620, and 126 under weak, 
medium, and strong SW Pdyn levels, respectively. The number of FAC cases decreased with an increasing SW 
Pdyn. It is because the higher the SW Pdyn is, the shorter the total observation time will be. However, we can see 
from the bottom panel of Figure 3 that the FAC occurrence increases monotonically with SW Pdyn. This means 
that the higher the SW Pdyn is, the more easily the FACs occur.

3.2.  The Relations Between the FAC Density and Footprint Location and SW Pdyn

Figure 4 shows the mean density (black dots) and the mean ILAT of the footprints (white squares) of FAC cases 
in each of the three SW Pdyn levels. The standard deviation of the mean (error bar) is given. The numbers beside 
the dots and squares are the numbers of FAC cases. We can see that the FAC density increased with increasing 
SW Pdyn, while the ILAT of its footprint in the polar region decreased with increasing SW Pdyn. This indicates that 
strong FACs were more common at lower ILAT. The slope from level 2 (i.e., 2 nPa ≤ SW Pdyn ≤ 5 nPa) to level 
3 (i.e., SW Pdyn > 5 nPa) is bigger than that from level 1 (i.e., SW Pdyn < 2 nPa) to level 2, which shows that the 
magnitude of the variation of the FAC density and its footprint ILAT are increasing. This means that the stronger 
the SW Pdyn was, the greater its role in controlling the FAC.

Furthermore, we calculated some parameters of FAC cases in each of the three SW Pdyn levels, including the FAC 
density and ILAT of FAC footprint mean values, median values, standard errors (SE), standard deviations (SD), 
and the ranges (maximum–minimum), as shown in Table 1. We can see that the density median value increased 
with increasing SW Pdyn, which is consistent with the variation of the mean value. The ILAT median value de-
creased with increasing SW Pdyn, which is also consistent with the variation of the mean value. SD shows how 
widely scattered the FAC cases are, and it also increases with increasing SW Pdyn. The increase of SE was mainly 

Figure 2.  Distribution of the field-aligned current (FAC) cases in the magnetotail (left two panels) in the GSM X–Y plane (top) and X–Z plane (bottom) and the 
distribution of footprints in the polar region (right panel). The red points denote the earthward and the blue points the tailward FACs.
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Figure 3.  (top) The number of field-aligned current (FAC) cases (circles) and total time of the observation (blue squares) 
under three different solar wind dynamic pressure (SW Pdyn) levels (Weak: SW Pdyn < 2 nPa; Medium: 2 nPa ≤ SW 
Pdyn ≤ 5 nPa; Strong: SW Pdyn > 5 nPa). (bottom) The normalized occurrence (black squares) with the three SW Pdyn levels.

Figure 4.  (top) Mean density (black dots) and standard deviation of the field-aligned current (FAC) cases in each solar wind 
dynamic pressure (SW Pdyn) level. (bottom) Mean ILAT (white squares) and standard deviation of the footprint of the FAC 
cases in each SW Pdyn level. The numbers beside the dots and squares are the numbers of FAC cases.
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due to the decrease of the number of FAC cases with increasing SW Pdyn. In addition, the FAC density range 
increased with increasing SW Pdyn.

Figure 5 shows the mean density (black squares) and SD of FAC cases as a function of SW Pdyn. The bin width 
of SW Pdyn is 1 nPa. Pressures above 8 nPa are treated as a single bin because of the small number of FAC cases. 
The number beside the black square is the number of FAC cases. From Figure 5 we can see that even if the statis-
tic interval becomes small, it has the same trend as that in Figure 4. The number of FAC cases rapidly decreases 
when the SW Pdyn is larger than 4 nPa, especially in the range 7 nPa ≤ SW Pdyn < 8 nPa, the number of FAC cases 
is only 12.

One of the purposes of setting the three SW Pdyn levels in this paper is to ensure that there are enough cases in 
every statistical interval to distinguish between the northern and southern hemisphere. Figure 6 is the same as 
Figure 4, but for different hemispheres (the left panel [a] is for the northern and the right [b] is for the southern 

SW Pdyn level FAC case number

FAC density (nA/m2)

Mean Median SE SD FAC density range (max–min)

Weak 746 4.4 3.6 0.08 2.3 16.6

Medium 620 5.0 4.2 0.12 2.9 25.7

Strong 126 6.4 4.6 0.46 5.1 33.9

SW Pdyn level FAC case number

FAC footprint (ILAT/°)

Mean Median SE SD ILAT range (Max–Min)

Weak 746 70.8 70.6 0.15 4.2 20.4

Medium 620 70.1 69.8 0.18 4.5 24.0

Strong 126 67.9 67.5 0.52 5.9 21.9

Note. Here: Weak, SW Pdyn < 2 nPa; Medium, 2 nPa ≤ SW Pdyn ≤ 5 nPa; Strong, SW Pdyn > 5 nPa. Standard errors (SE) of the mean FAC density and the mean ILAT, 
standard deviations (SD) of the mean FAC density and the mean ILAT. (Please note that SE equals SD divided by square root of the number of FAC cases).

Table 1 
Some Parameters of the FAC Cases in the Three SW Pdyn Levels

Figure 5.  The mean density (black squares) and standard deviation (SD) of field-aligned current (FAC) cases as a function of 
solar wind dynamic pressure (SW Pdyn). The bin width of SW Pdyn is 1 nPa. Pressures above 8 nPa are treated as a single bin 
because of the small number of FAC cases. The number beside the black square is the number of FAC cases.
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one). The numbers beside the dots and squares are the numbers of FAC cases. In the northern (southern) hemi-
sphere, the numbers of FAC cases were 352 (394), 266 (354), and 88 (38) under weak, medium, and strong SW 
Pdyn levels, respectively. We can see that in the northern hemisphere the FAC density increased with the three 
SW Pdyn levels, while in the southern one the FAC density had a significant enhancement only under strong SW 
Pdyn conditions. However, in the southern hemisphere the ILAT of the footprints increased with all three SW Pdyn 
levels, while in the northern one the ILAT of the footprints had a significant enhancement only under strong SW 
Pdyn conditions. The maximum/minimum FAC density and ILAT in the southern hemisphere were larger than 
those in the northern one. These results suggest that the FAC density in the magnetotail and its footprint in the 
polar region response to SW Pdyn have a north-south asymmetry.

4.  Discussion
In this study we investigated the FAC density in the PSBL in the magnetotail. Indeed, some authors have studied 
the FAC density in the low altitude Region 1 vs. MLT (Iijima & Potemra, 1978). Here, we compare our results 
with previously published results. Figure 7 shows the MLT distribution of the magnetotail FAC density (black 
circles) in the condition SW Pdyn < 2 (our result with Cluster observations) and the result of low altitude Region 
1 FAC in the condition |AL| ≥ 100 nT by Iijima and Potemra based on Triad observations (blue squares). From 
Figure 7 we can see that the variations of FAC density at different altitudes have the same tendency. This can 

Figure 6.  Same as Figure 4, but for different hemispheres (the left panel [a] is for the northern and the right [b] is for the southern one). The numbers beside the dots 
and squares are the numbers of field-aligned current (FAC) cases.
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be understood as a signature of the FACs in the PSBL being connected with 
those in the polar region through the magnetic field lines.

The FAC cases under the condition |AL| < 100 nT were only a small part of 
all cases in our study, so it had little effect on the result. From Figure 7, we 
also can see that the FAC density on the dawnside is slightly larger than that 
on the duskside. The maximum value of FAC density is about 4.32 nA/m2 in 
the region 1 ≤ MLT < 2, and the minimum value is about 4.13 nA/m2 in the 
region 21 ≤ MLT < 22. The difference between maximum and minimum is 
only 0.19 nA/m2, not exceeding 5% of the minimum value. For correlating 
the FAC density with the SW Pdyn, the MLT influence could be ignored.

Our results indicate that the FAC in the magnetotail is affected by the solar 
wind dynamic pressure. This manifests itself in three aspects: (a) In the three 
SW Pdyn levels, the FAC occurrence increases monotonically with SW Pdyn; 
(b) The FAC density increases with increasing SW Pdyn; (c) The FAC foot-
print (ILAT) in the polar region decreases with increasing SW Pdyn. When the 
solar wind dynamic pressure increases, the magnetosphere shrinks. Previous 
observations and simulations have suggested that the location of the subsolar 
magnetopause depends approximately on the balance between the solar wind 
dynamic pressure and the magnetospheric magnetic pressure (Martyn, 1951; 
Shue et al., 1997), and the spatial distribution of the magnetic pressure in the 

magnetosphere varies with the solar wind dynamic pressure. Some studies have proven that the low altitude Re-
gion 1 and Region 2 FAC are generated by magnetospheric pressure (e.g., Nakano et al., 2009; Yang et al., 1994). 
Because FAC in the magnetotail links to FAC at low altitude, we can therefore expect that the FAC in the mag-
netotail would depend on the solar wind dynamic pressure.

Some studies have suggested that the solar wind conditions determine the efficiency and location of reconnection 
at the dayside magnetopause, which in turn determines the efficiency of solar wind-magnetospheric coupling 
(e.g., Boudouridis et al., 2004; Nagai et al., 2005). An increase in reconnection efficiency can cause an intensi-
fication of the magnetospheric convection potential and, hence, the FAC density (Korth et al., 2010). The solar 
wind dynamic pressure strongly affects dayside reconnection as well as polar-cap convection, and also enhances 
magnetotail reconnection and magnetospheric convection (Boudouridis et  al.,  2007). On the basis of former 
research, The mechanisms of SW Pdyn 's impact on the FAC boil down to two major points: Firstly, the spatial 
distribution of the magnetic pressure in the magnetosphere varies with the SW Pdyn, and the FACs are closely re-
lated with the magnetic pressure; secondly, the SW Pdyn enhancement can increase reconnection and solar wind–
magnetosphere coupling efficiency (increased cross-polar cap potential and enhanced ionospheric convection), 
the occurrence and density of FAC would vary as well. So the solar wind dynamic pressure is an important factor 
which affected the occurrence and density of the FAC in the magnetotail.

In addition, the solar wind dynamic pressure modifies the location of FAC footprints, which has already been 
confirmed for Region 1 FAC at low altitude (Wing et al., 2011). Since Region 1 FACs and magnetotail FACs 
connect together and are closely related with the location of the boundary between open and closed magnetic 
flux, an increasing SW Pdyn compresses the magnetic field inside the magnetosphere, and the footprints of the 
magnetic lines along which the FACs move to lower latitudes. Therefore the magnetotail FAC footprint location 
must follow the expansion to lower latitudes as well. Conversely, when the SW Pdyn decreases, the footprints of 
magnetic field lines and the FACs move to poleward.

Our results also show that the FAC in the magnetotail controlled by SW Pdyn has a north-south asymmetry. The 
causes of the asymmetry are complex, there are several possible causes. The first reason may be due to the con-
figuration of the magnetosphere, as we know the geomagnetic dipole tilt angle makes the influence of solar wind 
on the magnetosphere asymmetrical in the northern and southern hemisphere, so this leads to the FAC in the 
magnetotail has a north-south hemispheric asymmetry. The second reason is the conductivity in the ionosphere 
(Fujii et al., 1981; Ohtani et al., 2005; Vallat et al., 2005) which also relates to geomagnetic dipole tilt angle. The 
amount and distribution of ionospheric conductivity can be changed by solar EUV radiation in two hemispheres. 
Different hemispheres differently receive solar EUV radiation in different amounts. Research has shown that the 

Figure 7.  The magnetic local time (MLT) distribution of the magnetotail 
field-aligned current (FAC) density in the condition SW Pdyn < 2 nPa 
(black circles), and the result of low altitude (Region 1) FAC density in the 
condition |AL| ≥ 100 nT by Iijima and Potemra (blue squares) based on Triad 
observations.
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high latitude field-aligned intensities increased by a factor of 1.5–1.8 in the summer polar cap in comparison 
with the winter hemisphere (Christiansen et al., 2002), so related FAC both in ionosphere and magnetosphere 
also have a north-south asymmetry. In addition, Christiansen et al. (2002) found the seasonal dependence in the 
global FAC system is generated and maintained by the various solar wind-magnetosphere interaction processes, 
such as the quasi-viscous interaction and reconnection. This argument could also be used to interpret the north-
south asymmetry of FAC. It requires more observations and simulation studies to pinpoint underlying physical 
mechanisms for such asymmetry.

5.  Summary
We used four Cluster spacecraft magnetic field data from July to October in 2001 and 2004 to calculate the FAC 
density. 1,492 FAC cases were selected for analysis. The occurrence, density, and the location of footprints of the 
FAC response in the magnetotail to the SW Pdyn have been studied in detail. Our results show that: (a) The num-
ber of FAC cases decreases with increasing SW Pdyn, however the FAC occurrence increases monotonically with 
SW Pdyn. (b) The FAC density increases with increasing SW Pdyn, while its footprint (ILAT) in the polar region 
decreases with increasing SW Pdyn. (c) The FAC controlled by SW Pdyn has a north-south asymmetry. The FAC 
density has a close correlation with SW Pdyn in the northern hemisphere rather than in the southern hemisphere. 
Conversely, the footprint location has a good correlation with SW Pdyn in the southern hemisphere rather than 
the northern hemisphere. (d) Comparing the MLT distribution (around midnight) of the magnetotail FAC density 
with the result of low altitude Region 1 FAC, the density variations of FACs with MLT at low altitude and in the 
magnetotail have the same tendency. This implies that the FACs in the magnetotail are associated with the FACs 
in the polar region. We also studied the influence of the MLT on the density distribution of FAC, and found that 
the MLT influence on the correlation between the density distribution and SW Pdyn could be ignored.

The impact of solar wind dynamic pressure on the FACs in the magnetotail is presented for the first time, and 
the results are very important for understanding the solar wind-magnetosphere-ionosphere coupling. Although 
we discussed some possible mechanisms for the magnetotail FACs response to the SW Pdyn, the multiple control 
mechanisms involved in the process of the FAC variation need to be studied further.

Data Availability Statement
The authors thank the Cluster team for their data and software (https://cosmos.esa.int/web/csa).
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