962 research outputs found

    Layered Chaos in Mean-field and Quantum Many-body Dynamics

    Get PDF
    We investigate the dimension of the phase space attractor of a quantum chaotic many-body ratchet in the mean-field limit. Specifically, we explore a driven Bose-Einstein condensate in three distinct dynamical regimes - Rabi oscillations, chaos, and self-trapping regime, and for each of them we calculate the correlation dimension. For the ground state of the ratchet formed by a system of field-free non-interacting particles, we find four distinct pockets of chaotic dynamics throughout these regimes. We show that a measurement of a local density in each of the dynamical regimes, has an attractor characterized with a higher fractal dimension, DR=2.59±0.01D_{R}=2.59\pm0.01, DC=3.93±0.04D_{C}=3.93\pm0.04, and DS=3.05±0.05D_{S}=3.05\pm0.05, as compared to the global measure of current, DR=2.07±0.02D_{R}=2.07\pm0.02, DC=2.96±0.05D_{C}=2.96\pm0.05, and DS=2.30±0.02D_{S}=2.30\pm0.02. We find that the many-body case converges to mean-field limit with strong sub-unity power laws in particle number NN, namely NαN^{\alpha} with αR=0.28±0.01\alpha_{R}={0.28\pm0.01}, αC=0.34±0.067\alpha_{C}={0.34\pm0.067} and αS=0.90±0.24\alpha_{S}={0.90\pm0.24} for each of the dynamical regimes mentioned above. The deviation between local and global measurement of the attractor's dimension corresponds to an increase towards high condensate depletion which remains constant for long time scales in both Rabi and chaotic regimes. The depletion is found to scale polynomially with particle number as NβN^{\beta} with βR=0.51±0.004\beta_{R}={0.51\pm0.004} and βC=0.18±0.004\beta_{C}={0.18\pm0.004} for the two regimes. Thus, we find a strong deviation from the mean-field results, especially in the chaotic regime of the quantum ratchet. The ratchet also reveals quantum revivals in the Rabi and self-trapped regimes but not in the chaotic regime. Based on the obtained results we outline pathways for the identification and characterization of the emergent phenomena in driven many-body systems

    Many-body Quantum Chaos and Entanglement in a Quantum Ratchet

    Get PDF
    We uncover signatures of quantum chaos in the many-body dynamics of a Bose-Einstein condensate-based quantum ratchet in a toroidal trap. We propose measures including entanglement, condensate depletion, and spreading over a fixed basis in many-body Hilbert space which quantitatively identify the region in which quantum chaotic many-body dynamics occurs, where random matrix theory is limited or inaccessible. With these tools we show that many-body quantum chaos is neither highly entangled nor delocalized in the Hilbert space, contrary to conventionally expected signatures of quantum chaos.Comment: 6 pages, 3 figures. 1 tabl

    Intermediate inflation in light of the three-year WMAP observations

    Get PDF
    The three-year observations from the Wilkinson Microwave Anisotropy Probe have been hailed as giving the first clear indication of a spectral index n_s<1. We point out that the data are equally well explained by retaining the assumption n_s=1 and allowing the tensor-to-scalar ratio r to be non-zero. The combination n_s=1 and r>0 is given (within the slow-roll approximation) by a version of the intermediate inflation model with expansion rate H(t) \propto t^{-1/3}. We assess the status of this model in light of the WMAP3 data.Comment: 4 pages RevTeX4 with one figure. Minor changes to match PRD accepted versio

    Retardation of oil cracking to gas and pressure induced combination reactions to account for viscous oil in deep petroleum basins: evidence from oil and n-hexadecane pyrolysis at water pressures up to 900bar

    Get PDF
    This study reports a laboratory pyrolysis experimental study on oil and n-hexadecane to rationalise the thermal stability of oil in deep petroleum reservoirs. Using a 25 ml Hastelloy pressure vessel, a 35° API North Sea oil (Oseberg) and n-hexadecane (n-C16), were pyrolysed separately under non-hydrous (20 bar), low pressure hydrous (175 bar) and high liquid water pressure (500 and 900 bar) at 350°C for 24 h. This study reports a laboratory pyrolysis experimental study on oil and n-hexadecane to rationalise the thermal stability of oil in deep petroleum reservoirs. Using a 25 ml Hastelloy pressure vessel, a 35° API North Sea oil (Oseberg) and n-hexadecane (n-C16), were pyrolysed separately under non-hydrous (20 bar), low pressure hydrous (175 bar) and high liquid water pressure (500 and 900 bar) at 350 °C for 24 h. This study shows that the initial cracking of oil and n-hexadecane to hydrocarbon gases was retarded in the presence of water (175 bar hydrous conditions) compared to low pressures in the absence of water (non-hydrous conditions). At 900 bar water pressure, the retardation of oil and n-hexadecane cracking was more significant compared to 175 bar hydrous and 500 bar water pressure conditions. Combination reactions have been observed for the first time in pressurised water experiments during the initial stages of cracking, resulting in the increased abundance of heavier n-alkane hydrocarbons (> C20), the amount of unresolved complex material (UCM), as well as the asphaltene content of the oil. These reactions, favoured by increasing water pressure provide a new mechanism for rationalising the thermal stability of oils, and for producing heavy oils at temperatures above which biodegradation can occur. Indeed, we demonstrate that bitumen from the high pressure Gulf of Mexico basin has been formed from lighter oil components and it possesses similar characteristics to the laboratory oils generated

    ArrayInitiative - a tool that simplifies creating custom Affymetrix CDFs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Probes on a microarray represent a frozen view of a genome and are quickly outdated when new sequencing studies extend our knowledge, resulting in significant measurement error when analyzing any microarray experiment. There are several bioinformatics approaches to improve probe assignments, but without in-house programming expertise, standardizing these custom array specifications as a usable file (e.g. as Affymetrix CDFs) is difficult, owing mostly to the complexity of the specification file format. However, without correctly standardized files there is a significant barrier for testing competing analysis approaches since this file is one of the required inputs for many commonly used algorithms. The need to test combinations of probe assignments and analysis algorithms led us to develop ArrayInitiative, a tool for creating and managing custom array specifications.</p> <p>Results</p> <p>ArrayInitiative is a standalone, cross-platform, rich client desktop application for creating correctly formatted, custom versions of manufacturer-provided (default) array specifications, requiring only minimal knowledge of the array specification rules and file formats. Users can import default array specifications, import probe sequences for a default array specification, design and import a custom array specification, export any array specification to multiple output formats, export the probe sequences for any array specification and browse high-level information about the microarray, such as version and number of probes. The initial release of ArrayInitiative supports the Affymetrix 3' IVT expression arrays we currently analyze, but as an open source application, we hope that others will contribute modules for other platforms.</p> <p>Conclusions</p> <p>ArrayInitiative allows researchers to create new array specifications, in a standard format, based upon their own requirements. This makes it easier to test competing design and analysis strategies that depend on probe definitions. Since the custom array specifications are easily exported to the manufacturer's standard format, researchers can analyze these customized microarray experiments using established software tools, such as those available in Bioconductor.</p

    Impact of high water pressure on oil generation and maturation in Kimmeridge Clay and Monterey source rocks: implications for petroleum retention and gas generation in shale gas systems

    Get PDF
    This study presents results for pyrolysis experiments conducted on immature Type II and IIs source rocks (Kimmeridge Clay, Dorset UK, and Monterey shale, California, USA respectively) to investigate the impact of high water pressure on source rock maturation and petroleum (oil and gas) generation. Using a 25 ml Hastalloy vessel, the source rocks were pyrolysed at low (180 and 245 bar) and high (500, 700 and 900 bar) water pressure hydrous conditions at 350 °C and 380 °C for between 6 and 24 h. For the Kimmeridge Clay (KCF) at 350 °C, Rock Eval HI of the pyrolysed rock residues were 30–44 mg/g higher between 6 h and 12 h at 900 bar than at 180 bar. Also at 350 °C for 24 h the gas, expelled oil, and vitrinite reflectance (VR) were all reduced by 46%, 61%, and 0.25% Ro respectively at 900 bar compared with 180 bar. At 380 °C the retardation effect of pressure on the KCF was less significant for gas generation. However, oil yield and VR were reduced by 47% and 0.3% Ro respectively, and Rock Eval HI was also higher by 28 mg/g at 900 bar compared with 245 bar at 12 h. The huge decrease in gas and oil yields and the VR observed with an increase in water pressure at 350 °C for 24 h and 380 °C for 12 h (maximum oil generation) were also observed for all other times and temperatures investigated for the KCF and the Monterey shale. This shows that high water pressure significantly retards petroleum generation and source rock maturation. The retardation of oil generation and expulsion resulted in significant amounts of bitumen and oil being retained in the rocks pyrolysed at high pressures, suggesting that pressure is a possible mechanism for retaining petroleum (bitumen and oil) in source rocks. This retention of petroleum within the rock provides a mechanism for oil-prone source rocks to become potential shale gas reservoirs. The implications from this study are that in geological basins, pressure, temperature and time will all exert significant control on the extent of petroleum generation and source rock maturation for Type II source rocks, and that the petroleum retained in the rocks at high pressures may explain in part why oil-prone source rocks contain the most prolific shale gas resources

    Primordial black holes in braneworld cosmologies: Formation, cosmological evolution and evaporation

    Get PDF
    We consider the population evolution and evaporation of primordial black holes in the simplest braneworld cosmology, Randall-Sundrum type II. We demonstrate that black holes forming during the high-energy phase of this theory (where the expansion rate is proportional to the density) have a modified evaporation law, resulting in a longer lifetime and lower temperature at evaporation, while those forming in the standard regime behave essentially as in the standard cosmology. For sufficiently large values of the AdS radius, the high-energy regime can be the one relevant for primordial black holes evaporating at key epochs such as nucleosynthesis and the present. We examine the formation epochs of such black holes, and delimit the parameter regimes where the standard scenario is significantly modified.Comment: 9 pages RevTeX4 file with four figures incorporated, minor changes to match published versio

    Clinical diagnostic utility of IP-10 and LAM antigen levels for the diagnosis of tuberculous pleural effusions in a high burden setting

    Get PDF
    Background: Current tools for the diagnosis of tuberculosis pleural effusions are sub-optimal. Data about the value of new diagnostic technologies are limited, particularly, in high burden settings. Preliminary case control studies have identified IFN-γ-inducible-10kDa protein (IP-10) as a promising diagnostic marker; however, its diagnostic utility in a day-to-day clinical setting is unclear. Detection of LAM antigen has not previously been evaluated in pleural fluid. Methods: We investigated the comparative diagnostic utility of established (adenosine deaminase [ADA]), more recent (standardized nucleic-acid-amplification-test [NAAT]) and newer technologies (a standardized LAM mycobacterial antigendetection assay and IP-10 levels) for the evaluation of pleural effusions in 78 consecutively recruited South African tuberculosis suspects. All consenting participants underwent pleural biopsy unless contra-indicated or refused. The reference standard comprised culture positivity for M. tuberculosis or histology suggestive of tuberculosis. Principal Findings: Of 74 evaluable subjects 48, 7 and 19 had definite, probable and non-TB, respectively. IP-10 levels were significantly higher in TB vs non-TB participants (p&lt;0.0001). The respective outcomes [sensitivity, specificity, PPV, NPV %] for the different diagnostic modalities were: ADA at the 30 IU/L cut-point [96; 69; 90; 85], NAAT [6; 93; 67; 28], IP-10 at the 28,170 pg/ml ROC-derived cut-point [80; 82; 91; 64], and IP-10 at the 4035 pg/ml cut-point [100; 53; 83; 100]. Thus IP-10, using the ROC-derived cut-point, missed ~20% of TB cases and mis-diagnosed ~20% of non-TB cases. By contrast, when a lower cut-point was used a negative test excluded TB. The NAAT had a poor sensitivity but high specificity. LAM antigendetection was not diagnostically useful. Conclusion: Although IP-10, like ADA, has sub-optimal specificity, it may be a clinically useful rule-out test for tuberculous pleural effusions. Larger multi-centric studies are now required to confirm our findings
    • …
    corecore