2,055 research outputs found

    The case for long range chemoreceptive piloting in Chelonia

    Get PDF
    The reproductive ecology and migration habits of Chelonia are investigated. Efforts were made to determine if the turtle navigates by chemoreception and if sensory responses of the migrating animals could be electronically tracked through telemetry. Efforts were also made to: (1) explain why certain small islands or restricted areas of mainland shore are chosen by Chelonia as nesting grounds, even when located a thousand miles or more from the year round feeding grounds of the population; (2) identify guidance mechanisms used by migrants in their periodic open ocean travels; and (3) account for the so called lost year - the virtually complete disappearance of young sea turtles during their first year of life. It was suggested that turtle migration is aided by an olfactory mechanism, sun compass, and ocean currents. The tracking experiment was unsuccessful; the equipment was lost or damaged and stopped functioning after about two hours

    A new turtle from Florida, with notes on Pseudemys floridana mobiliensis (Holbrook)

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/56787/1/OP348.pd

    Current profiles and AC losses of a superconducting strip with elliptic cross-section in perpendicular magnetic field

    Full text link
    The case of a hard type II superconductor in the form of strip with elliptic cross-section when placed in transverse magnetic field is studied. We approach the problem in two steps, both based on the critical-state model. First we calculate numerically the penetrated current profiles that ensure complete shielding in the interior, without assuming an a priori form for the profiles. In the second step we introduce an analytical approximation that asumes that the current profiles are ellipses. Expressions linking the sample magnetization to the applied field are derived covering the whole range of applied fields. The theoretical predictions are tested by the comparison with experimental data for the imaginary part of AC susceptibility.Comment: 12 pages; 3 figure

    Sub-Planckian black holes and the Generalized Uncertainty Principle

    Get PDF
    The Black Hole Uncertainty Principle correspondence suggests that there could exist black holes with mass beneath the Planck scale but radius of order the Compton scale rather than Schwarzschild scale. We present a modified, self-dual Schwarzschild-like metric that reproduces desirable aspects of a variety of disparate models in the sub-Planckian limit, while remaining Schwarzschild in the large mass limit. The self-dual nature of this solution under MM1M \leftrightarrow M^{-1} naturally implies a Generalized Uncertainty Principle with the linear form Δx1Δp+Δp\Delta x \sim \frac{1}{\Delta p} + \Delta p. We also demonstrate a natural dimensional reduction feature, in that the gravitational radius and thermodynamics of sub-Planckian objects resemble that of (1+1)(1+1)-D gravity. The temperature of sub-Planckian black holes scales as MM rather than M1M^{-1} but the evaporation of those smaller than 103610^{-36}g is suppressed by the cosmic background radiation. This suggests that relics of this mass could provide the dark matter.Comment: 12 pages, 9 figures, version published in J. High En. Phy

    RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases.

    Get PDF
    Cellular RNA-dependent RNA polymerases (RDRs) catalyze synthesis of double-stranded RNAs that can serve to initiate or amplify RNA silencing. Arabidopsis thaliana has six RDR genes; RDRs 1, 2 and 6 have roles in anti-viral RNA silencing. RDR6 is constitutively expressed but RDR1 expression is elevated following plant treatment with defensive phytohormones. RDR1 also contributes to basal virus resistance. RDR1 has been studied in several species including A. thaliana, tobacco (Nicotiana tabacum), N. benthamiana, N. attenuata and tomato (Solanum lycopersicum) but not to our knowledge in potato (S. tuberosum). StRDR1 was identified and shown to be salicylic acid-responsive. StRDR1 transcript accumulation decreased in transgenic potato plants constitutively expressing a hairpin construct and these plants were challenged with three viruses: potato virus Y, potato virus X, and tobacco mosaic virus. Suppression of StRDR1 gene expression did not increase the susceptibility of potato to these viruses. Phylogenetic analysis of RDR genes present in potato and in a range of other plant species identified a new RDR gene family, not present in potato and found only in Rosids (but apparently lost in the Rosid A. thaliana) for which we propose the name RDR7.LJRH was supported by a studentship co-funded by the James Hutton Institute (formerly Scottish Crop Research Institute) and the UK Biotechnological and Biological Sciences Research Council (BBSRC). Work in the JPC lab is funded by The Leverhulme Trust (RPG-2012-667), BBSRC (BB/D014376/1, BB/J011762/1) and the Cambridge University Newton Trust. SFB was funded by Leverhulme grant F/09-741/G to Professor Beverley Glover. KG was funded by an EMBO Short Term Fellowship. Work in the PP lab is funded by grant number NRF-2013R1A2A2A01016282 from the Korean National Research Foundation.This is the author accepted manuscript. The final version is available from Nature Publishing Group via https://doi.org/10.1038/srep2308

    Self-similar Bianchi models: I. Class A models

    Full text link
    We present a study of Bianchi class A tilted cosmological models admitting a proper homothetic vector field together with the restrictions, both at the geometrical and dynamical level, imposed by the existence of the simply transitive similarity group. The general solution of the symmetry equations and the form of the homothetic vector field are given in terms of a set of arbitrary integration constants. We apply the geometrical results for tilted perfect fluids sources and give the general Bianchi II self-similar solution and the form of the similarity vector field. In addition we show that self-similar perfect fluid Bianchi VII0_0 models and irrotational Bianchi VI0_0 models do not exist.Comment: 14 pages, Latex; to appear in Classical and Quantum Gravit

    Hartree-Fock variational bounds for ground state energy of chargeless fermions with finite magnetic moment in presence of a hard core potential:A stable ferromagnetic state

    Get PDF
    We use different types of determinantal Hartree-Fock (HF) wave functions to calculate variational bounds for the ground state energy of spin-half fermions in volume V_0, with mass m, electric charge zero, and magnetic moment mu, which are interacting through long range magnetic dipole-dipole interaction. We find that at high densities when the average inter particle distance r_0 becomes small compared to the magnetic length r_m, a ferromagnetic state with spheroidal occupation function, involving quadrupolar deformation, gives a lower energy compared to the variational energy for the uniform paramagnetic state. This HF variational bound to the ground state energy turns out to have a lower energy than our earlier calculation in which instead of a determinantal wavefunction we had used a positive semi-definite single particle density matrix operator whose eigenvalues, having quadrupolar deformation, were allowed to take any value from 0 to 1. This system is of course still unstable towards infinite density collapse, but we show here explicitly that a suitable short range repulsive (hard core) interaction of strength U_0 and range a can stop this collapse.The existence of a stable high density ferromagnetic state with spheroidal occupation function is possible as long as the ratio of hard-core and magnetic dipole coupling constants is not very small compared to 1.Comment: A shorter version of this paper will appear in Pramana - Journal of Physic

    Observational diagnostics of gas in protoplanetary disks

    Full text link
    Protoplanetary disks are composed primarily of gas (99% of the mass). Nevertheless, relatively few observational constraints exist for the gas in disks. In this review, I discuss several observational diagnostics in the UV, optical, near-IR, mid-IR, and (sub)-mm wavelengths that have been employed to study the gas in the disks of young stellar objects. I concentrate in diagnostics that probe the inner 20 AU of the disk, the region where planets are expected to form. I discuss the potential and limitations of each gas tracer and present prospects for future research.Comment: Review written for the proceedings of the conference "Origin and Evolution of Planets 2008", Ascona, Switzerland, June 29 - July 4, 2008. Date manuscript: October 2008. 17 Pages, 6 graphics, 134 reference

    Theory of flux cutting and flux transport at the critical current of a type-II superconducting cylindrical wire

    Full text link
    I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Perez-Rodriguez. The vortex dynamics depend in detail upon two nonlinear effective resistivities for flux cutting (\rho_\parallel) and flux flow (\rho_\perp), and their ratio r = \rho_\parallel/\rho_\perp. When r < 1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magnetic moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle \phi. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density J_c(\phi) that makes the vortex arc unstable.Comment: 14 pages, 13 figure
    corecore