1,231 research outputs found

    Strongly transitive automata and the Cerny conjecture

    Get PDF
    The synchronization problem is investigated for a new class of deterministic automata called strongly transitive. An extension to unambiguous automata is also considered

    Transition Property For Cube-Free Words

    Full text link
    We study cube-free words over arbitrary non-unary finite alphabets and prove the following structural property: for every pair (u,v)(u,v) of dd-ary cube-free words, if uu can be infinitely extended to the right and vv can be infinitely extended to the left respecting the cube-freeness property, then there exists a "transition" word ww over the same alphabet such that uwvuwv is cube free. The crucial case is the case of the binary alphabet, analyzed in the central part of the paper. The obtained "transition property", together with the developed technique, allowed us to solve cube-free versions of three old open problems by Restivo and Salemi. Besides, it has some further implications for combinatorics on words; e.g., it implies the existence of infinite cube-free words of very big subword (factor) complexity.Comment: 14 pages, 5 figure

    Sets Represented as the Length-n Factors of a Word

    Full text link
    In this paper we consider the following problems: how many different subsets of Sigma^n can occur as set of all length-n factors of a finite word? If a subset is representable, how long a word do we need to represent it? How many such subsets are represented by words of length t? For the first problem, we give upper and lower bounds of the form alpha^(2^n) in the binary case. For the second problem, we give a weak upper bound and some experimental data. For the third problem, we give a closed-form formula in the case where n <= t < 2n. Algorithmic variants of these problems have previously been studied under the name "shortest common superstring"

    Spectral triples and the super-Virasoro algebra

    Get PDF
    We construct infinite dimensional spectral triples associated with representations of the super-Virasoro algebra. In particular the irreducible, unitary positive energy representation of the Ramond algebra with central charge c and minimal lowest weight h=c/24 is graded and gives rise to a net of even theta-summable spectral triples with non-zero Fredholm index. The irreducible unitary positive energy representations of the Neveu-Schwarz algebra give rise to nets of even theta-summable generalised spectral triples where there is no Dirac operator but only a superderivation.Comment: 27 pages; v2: a comment concerning the difficulty in defining cyclic cocycles in the NS case have been adde

    Representations of Conformal Nets, Universal C*-Algebras and K-Theory

    Full text link
    We study the representation theory of a conformal net A on the circle from a K-theoretical point of view using its universal C*-algebra C*(A). We prove that if A satisfies the split property then, for every representation \pi of A with finite statistical dimension, \pi(C*(A)) is weakly closed and hence a finite direct sum of type I_\infty factors. We define the more manageable locally normal universal C*-algebra C*_ln(A) as the quotient of C*(A) by its largest ideal vanishing in all locally normal representations and we investigate its structure. In particular, if A is completely rational with n sectors, then C*_ln(A) is a direct sum of n type I_\infty factors. Its ideal K_A of compact operators has nontrivial K-theory, and we prove that the DHR endomorphisms of C*(A) with finite statistical dimension act on K_A, giving rise to an action of the fusion semiring of DHR sectors on K_0(K_A)$. Moreover, we show that this action corresponds to the regular representation of the associated fusion algebra.Comment: v2: we added some comments in the introduction and new references. v3: new authors' addresses, minor corrections. To appear in Commun. Math. Phys. v4: minor corrections, updated reference

    Distinguishing noise from chaos: objective versus subjective criteria using Horizontal Visibility Graph

    Get PDF
    A recently proposed methodology called the Horizontal Visibility Graph (HVG) [Luque {\it et al.}, Phys. Rev. E., 80, 046103 (2009)] that constitutes a geometrical simplification of the well known Visibility Graph algorithm [Lacasa {\it et al.\/}, Proc. Natl. Sci. U.S.A. 105, 4972 (2008)], has been used to study the distinction between deterministic and stochastic components in time series [L. Lacasa and R. Toral, Phys. Rev. E., 82, 036120 (2010)]. Specifically, the authors propose that the node degree distribution of these processes follows an exponential functional of the form P(κ)exp(λ κ)P(\kappa)\sim \exp(-\lambda~\kappa), in which κ\kappa is the node degree and λ\lambda is a positive parameter able to distinguish between deterministic (chaotic) and stochastic (uncorrelated and correlated) dynamics. In this work, we investigate the characteristics of the node degree distributions constructed by using HVG, for time series corresponding to 2828 chaotic maps and 33 different stochastic processes. We thoroughly study the methodology proposed by Lacasa and Toral finding several cases for which their hypothesis is not valid. We propose a methodology that uses the HVG together with Information Theory quantifiers. An extensive and careful analysis of the node degree distributions obtained by applying HVG allow us to conclude that the Fisher-Shannon information plane is a remarkable tool able to graphically represent the different nature, deterministic or stochastic, of the systems under study.Comment: Submitted to PLOS On

    Super-KMS functionals for graded-local conformal nets

    Full text link
    Motivated by a few preceding papers and a question of R. Longo, we introduce super-KMS functionals for graded translation-covariant nets over R with superderivations, roughly speaking as a certain supersymmetric modification of classical KMS states on translation-covariant nets over R, fundamental objects in chiral algebraic quantum field theory. Although we are able to make a few statements concerning their general structure, most properties will be studied in the setting of specific graded-local (super-) conformal models. In particular, we provide a constructive existence and partial uniqueness proof of super-KMS functionals for the supersymmetric free field, for certain subnets, and for the super-Virasoro net with central charge c>= 3/2. Moreover, as a separate result, we classify bounded super-KMS functionals for graded-local conformal nets over S^1 with respect to rotations.Comment: 30 pages, revised version (to appear in Ann. H. Poincare

    From livelihoods to leisure and back: refugee ‘self-reliance’ as collective practices in Lebanon, India and Greece

    Get PDF
    Over the last two decades, leading humanitarian agencies in the Global North have increasingly promoted a policy of self-reliance, understood as making individual refugees financially independent from aid assistance through livelihood programmes. However, individual economic autonomy offers an incomplete picture of refugee well-being. Based on fieldwork conducted over 2017 in Halba (Lebanon), Delhi (India) and Thessaloniki (Greece), this multi-site study shows that non-camp refugees build on collective strategies at household, social network and community levels in efforts to develop mechanisms of survival and enfranchisement. These strategies include social and leisure activities as well as income-generating activities which are often organised compartmentally in humanitarian programming. We argue that while leisure and social mingling alone cannot ensure economic sustainability, they are fundamental dimensions of self-reliance as seen by refugees and should therefore be systematically included in livelihood programming. “It is on a living tree that the vine grows” (Ghanaian proverb teaching support, growth and interdependence on one another within the community)
    corecore