82 research outputs found

    Persistent resistance to HIV-1 infection in CD4 T cells from exposed uninfected Vietnamese individuals is mediated by entry and post-entry blocks

    Get PDF
    BACKGROUND: We have previously reported that CD4 T cells from some exposed uninfected (EU) Vietnamese intravenous drug users are relatively resistant to HIV infection in vitro. Here, we further characterized the restriction of viral replication in CD4 T cells from five EUs and assessed its persistence in serial samples. RESULTS: CD4 T cells and/or PBMC sampled during a period of between 2 and 6 years were challenged with replication-competent HIV-1 and other retroviral particles pseudotyped with envelope proteins of various tropisms. CCR5 expression and function in resistant CD4 T cells was evaluated. The step at which HIV-1 replication is restricted was investigated by real-time PCR quantification of HIV-1 reverse transcripts. We identified three patterns of durable HIV-1 restriction in EU CD4 T cells. CD4 T cells from four of the five EU subjects were resistant to HIV-1 R5 infection. In two cases this resistance was associated with low CCR5 surface expression, which was itself associated with heterozygous CCR5 mutations. In the other two cases, CD4 T cells were resistant to HIV-1 R5 infection despite normal CCR5 expression and signaling function, and normal β-chemokine secretion upon CD4 T cell activation. Instead, restriction appeared to be due to enhanced CD4 T cell sensitivity to β-chemokines in these two subjects. In the fifth EU subject the restriction involved post-entry steps of viral replication and affected not only HIV-1 but also other lentiviruses. The restriction was not overcome by a high viral inoculum, suggesting that it was not mediated by a saturable inhibitory factor. CONCLUSION: Various constitutive mechanisms of CD4 T cell resistance to HIV-1 infection, affecting entry or post-entry steps of viral replication, are associated with resistance to HIV-1 in subjects who remain uninfected despite long-term high-risk behavior

    Patterns of chromosomal copy-number alterations in intrahepatic cholangiocarcinoma

    Get PDF
    International audienceBackground: Intrahepatic cholangiocarcinomas (ICC) are relatively rare malignant tumors associated with a poor prognosis. Recent studies using genome-wide sequencing technologies have mainly focused on identifying new driver mutations. There is nevertheless a need to investigate the spectrum of copy number aberrations in order to identify potential target genes in the altered chromosomal regions. The aim of this study was to characterize the patterns of chromosomal copy-number alterations (CNAs) in ICC. Methods: 53 patients having ICC with frozen material were selected. In 47 cases, DNA hybridization has been performed on a genomewide SNP array. A procedure with a segmentation step and a calling step classified genomic regions into copy-number aberration states. We identified the exclusively amplified and deleted recurrent genomic areas. These areas are those showing the highest estimated propensity level for copy loss (resp. copy gain) together with the lowest level for copy gain (resp. copy loss). We investigated ICC clustering. We analyzed the relationships between CNAs and clinico-pathological characteristics. Results: The overall genomic profile of ICC showed many alterations with higher rates for the deletions. Exclusively deleted genomic areas were 1p, 3p and 14q. The main exclusively amplified genomic areas were 1q, 7p, 7q and 8q. Based on the exclusively deleted/amplified genomic areas, a clustering analysis identified three tumors groups: the first group characterized by copy loss of 1p and copy gain of 7p, the second group characterized by 1p and 3p copy losses without 7p copy gain, the last group characterized mainly by very few CNAs. From univariate analyses, the number of tumors, the size of the largest tumor and the stage were significantly associated with shorter time recurrence. We found no relationship between the number of altered cytobands or tumor groups and time to recurrence. Conclusion: This study describes the spectrum of chromosomal aberrations across the whole genome. Some of the recurrent exclusive CNAs harbor candidate target genes. Despite the absence of correlation between CNAs and clinico-pathological characteristics, the co-occurence of 7p gain and 1p loss in a subgroup of patients may suggest a differential activation of EGFR and its downstream pathways, which may have a potential effect on targeted therapies

    Sporadic Infantile Epileptic Encephalopathy Caused by Mutations in PCDH19 Resembles Dravet Syndrome but Mainly Affects Females

    Get PDF
    Dravet syndrome (DS) is a genetically determined epileptic encephalopathy mainly caused by de novo mutations in the SCN1A gene. Since 2003, we have performed molecular analyses in a large series of patients with DS, 27% of whom were negative for mutations or rearrangements in SCN1A. In order to identify new genes responsible for the disorder in the SCN1A-negative patients, 41 probands were screened for micro-rearrangements with Illumina high-density SNP microarrays. A hemizygous deletion on chromosome Xq22.1, encompassing the PCDH19 gene, was found in one male patient. To confirm that PCDH19 is responsible for a Dravet-like syndrome, we sequenced its coding region in 73 additional SCN1A-negative patients. Nine different point mutations (four missense and five truncating mutations) were identified in 11 unrelated female patients. In addition, we demonstrated that the fibroblasts of our male patient were mosaic for the PCDH19 deletion. Patients with PCDH19 and SCN1A mutations had very similar clinical features including the association of early febrile and afebrile seizures, seizures occurring in clusters, developmental and language delays, behavioural disturbances, and cognitive regression. There were, however, slight but constant differences in the evolution of the patients, including fewer polymorphic seizures (in particular rare myoclonic jerks and atypical absences) in those with PCDH19 mutations. These results suggest that PCDH19 plays a major role in epileptic encephalopathies, with a clinical spectrum overlapping that of DS. This disorder mainly affects females. The identification of an affected mosaic male strongly supports the hypothesis that cellular interference is the pathogenic mechanism

    WDR34, a candidate gene for non-syndromic rod-cone dystrophy

    Get PDF
    Rod-cone dystrophy (RCD), also called retinitis pigmentosa, is characterized by rod followed by cone photoreceptor degeneration, leading to gradual visual loss. Mutations in over 65 genes have been associated with non-syndromic RCD explaining 60% to 70% of cases, with novel gene defects possibly accounting for the unsolved cases. Homozygosity mapping and whole-exome sequencing applied to a case of autosomal recessive non-syndromic RCD from a consanguineous union identified a homozygous variant in WDR34. Mutations in WDR34 have been previously associated with severe ciliopathy syndromes possibly associated with a retinal dystrophy. This is the first report of a homozygous mutation in WDR34 associated with non-syndromic RCD.Doctoral funding from the Ministère de l'Enseignement Supérieur et de la Recherche; Europe exchange 2018 Erasmus; European Reintegration Grant, Grant/Award Number: PERG04-GA-2008-231125; Fondation de France-Berthe Fouassier; Foundation Fighting Blindness, Grant/Award Number: Grant # CD-CL-0808-0466-CHNO CIC503 recogn; Foundation Voir et Entendre; French Agence Nationale de la Recherche, Grant/Award Numbers: IHU FOReSIGHT: ANR-18-IAHU-0001, LIFESENSES: ANR-10-LABX-65; National Eye Institute [R01EY012910 (EAP), R01EY026904 (KMB/EAP) and P30EY014104 (MEEI core support)], the Foundation Fightin

    Distinct Genetic Loci Control Plasma HIV-RNA and Cellular HIV-DNA Levels in HIV-1 Infection: The ANRS Genome Wide Association 01 Study

    Get PDF
    Previous studies of the HIV-1 disease have shown that HLA and Chemokine receptor genetic variants influence disease progression and early viral load. We performed a Genome Wide Association study in a cohort of 605 HIV-1-infected seroconverters for detection of novel genetic factors that influence plasma HIV-RNA and cellular HIV-DNA levels. Most of the SNPs strongly associated with HIV-RNA levels were localised in the 6p21 major histocompatibility complex (MHC) region and were in the vicinity of class I and III genes. Moreover, protective alleles for four disease-associated SNPs in the MHC locus (rs2395029, rs13199524, rs12198173 and rs3093662) were strikingly over-represented among forty-five Long Term HIV controllers. Furthermore, we show that the HIV-DNA levels (reflecting the HIV reservoir) are associated with the same four SNPs, but also with two additional SNPs on chromosome 17 (rs6503919; intergenic region flanked by the DDX40 and YPEL2 genes) and chromosome 8 (rs2575735; within the Syndecan 2 gene). Our data provide evidence that the MHC controls both HIV replication and HIV reservoir. They also indicate that two additional genomic loci may influence the HIV reservoir

    Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human.

    Get PDF
    Neuronal migration disorders such as lissencephaly and subcortical band heterotopia are associated with epilepsy and intellectual disability. DCX, PAFAH1B1 and TUBA1A are mutated in these disorders; however, corresponding mouse mutants do not show heterotopic neurons in the neocortex. In contrast, spontaneously arisen HeCo mice display this phenotype, and our study revealed that misplaced apical progenitors contribute to heterotopia formation. While HeCo neurons migrated at the same speed as wild type, abnormally distributed dividing progenitors were found throughout the cortical wall from embryonic day 13. We identified Eml1, encoding a microtubule-associated protein, as the gene mutated in HeCo mice. Full-length transcripts were lacking as a result of a retrotransposon insertion in an intron. Eml1 knockdown mimicked the HeCo progenitor phenotype and reexpression rescued it. We further found EML1 to be mutated in ribbon-like heterotopia in humans. Our data link abnormal spindle orientations, ectopic progenitors and severe heterotopia in mouse and human

    Genetic Drivers of Kidney Defects in the DiGeorge Syndrome

    Get PDF
    Background The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown. Methods We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice. Results We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P=4.5×10(-14)). We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 patients with congenital urinary anomalies had newly identified, heterozygous protein-altering variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model induced developmental defects similar to those observed in patients with congenital urinary anomalies. Conclusions We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver. (Funded by the National Institutes of Health and others.)

    Limitations of IL-2 and rapamycin in immunotherapy of type 1 diabetes

    Full text link
    Administration of low-dose interleukin-2 (IL-2) alone or combined with rapamycin (RAPA) prevents hyperglycemia in NOD mice. Also, low-dose IL-2 cures recent-onset type 1 diabetes (T1D) in NOD mice, partially by boosting pancreatic regulatory T cells (Treg cells). These approaches are currently being evaluated in humans. Our objective was to study the effect of higher IL-2 doses (250,000-500,000 IU daily) as well as low-dose IL-2 (25,000 IU daily) and RAPA (1 mg/kg daily) (RAPA/IL-2) combination. We show that, despite further boosting of Treg cells, high doses of IL-2 rapidly precipitated T1D in prediabetic female and male mice and increased myeloid cells in the pancreas. Also, we observed that RAPA counteracted IL-2 effects on Treg cells, failed to control IL-2-boosted NK cells, and broke IL-2-induced tolerance in a reversible way. Notably, the RAPA/IL-2 combination failure to cure T1D was associated with an unexpected deleterious effect on glucose homeostasis at multiple levels, including β-cell division, glucose tolerance, and liver glucose metabolism. Our data help to understand the therapeutic limitations of IL-2 alone or RAPA/IL-2 combination and could lead to the design of improved therapies for T1D
    corecore