921 research outputs found

    Direct Digital Demultiplexing of Analog TDM Signals for Cable Reduction in Ultrasound Imaging Catheters.

    Get PDF
    In real-time catheter based 3D ultrasound imaging applications, gathering data from the transducer arrays is difficult as there is a restriction on cable count due to the diameter of the catheter. Although area and power hungry multiplexing circuits integrated at the catheter tip are used in some applications, these are unsuitable for use in small sized catheters for applications like intracardiac imaging. Furthermore, the length requirement for catheters and limited power available to on-chip cable drivers leads to limited signal strength at the receiver end. In this paper an alternative approach using Analog Time Division Multiplexing (TDM) is presented which addresses the cable restrictions of ultrasound catheters. A novel digital demultiplexing technique is also described which allows for a reduction in the number of analog signal processing stages required. The TDM and digital demultiplexing schemes are demonstrated for an intracardiac imaging system that would operate in the 4 MHz to 11 MHz range. A TDM integrated circuit (IC) with 8:1 multiplexer is interfaced with a fast ADC through a micro-coaxial catheter cable bundle, and processed with an FPGA RTL simulation. Input signals to the TDM IC are recovered with -40 dB crosstalk between channels on the same micro-coax, showing the feasibility of this system for ultrasound imaging applications

    Time-division multiplexing for cable reduction in ultrasound imaging catheters

    Get PDF
    In ultrasound imaging catheter applications, gathering the data from multi-element transducer arrays is difficult as there is a restriction on cable count due to the diameter of the catheter. In such applications, CMUT-on-CMOS technology allows for 2D arrays with many elements to be designed and bonded directly onto CMOS circuitry. This allows for complex electronics to be placed at the tip of the catheter which leads to the possibility to include electronic multiplexing techniques to greatly reduce the cable count required for a large element array. Current approaches to cable reduction tend to rely on area and power hungry circuits to function, making them unsuitable for use in catheters. Furthermore the length requirement for catheters and lack of power available to on-chip cable drivers leads to limited signal strength at the receiver end. In this paper an alternative approach using Analogue Time Division Multiplexing (TDM) is presented, which addresses the cable restrictions of the catheter and, using a novel digital demultiplexing technique, allows for a reduction in the number of analogue signal processing stages required

    Front-end electronics for cable reduction in Intracardiac Echocardiography (ICE) catheters

    Get PDF
    3-D imaging ICE catheters with large element counts present design challenges in achieving simultaneous data readout from all elements while significantly reducing cable count for a small catheter diameter. Current approaches such as microbeamformer techniques tend to rely on area and power hungry circuits, making them undesirable for ICE catheters. In this paper, a system which uses are an efficient real-time programmable on-chip transmit (TX) beamformer circuitry to reduce the cable count on the TX side and analog 8/1 Time Division Multiplexing (TDM) with Direct Digital Demodulation (DDD) to reduce the cable count on the receive (RX) side is presented

    Single-Chip Reduced-Wire CMUT-on-CMOS System for Intracardiac Echocardiography

    Get PDF
    CMUT-on-CMOS integration is particularly suitable for catheter based ultrasound imaging applications, where electronics integration enables multiplexing capabilities to reduce the number of electrical connections leading to smaller catheter cable profiles. Here, a single-chip CMUT-on-CMOS system for intracardiac echocardiography (ICE) is presented. In this system, a 64 element 1-D CMUT array is fabricated over an application specific integrated circuit (ASIC) that features a programmable transmit beamformer with high voltage (HV) pulsers and receive circuits using 8:1 time division multiplexing (TDM). Integration of pitch matched 64 channel front-end circuits with CMUT arrays in a single-chip configuration allows for implementation of catheter probes with miniaturization, reduced number of cables, and better mechanical flexibility. The ASIC is implemented in 60 V 0.18 μm HV process. It occupies 2.6×11 mm 2 which can fit in the catheter size of 9F, and reduces the number of wires from more than 64 to 22. This system is used for B-mode imaging of imaging phantoms and its potential application for 2D CMUT-on-CMOS arrays is discussed

    Single-Chip Reduced-Wire Active Catheter System with Programmable Transmit Beamforming and Receive Time-Division Multiplexing for Intracardiac Echocardiography

    Get PDF
    Intracardiac echocardiography (ICE) provides real-time ultrasound imaging of the heart anatomy from inside, guiding interventions like valve repair, closure of atrial septal defects (ASD) and catheter-based ablation to treat atrial fibrillation. With its better image quality and ease of use, ICE is becoming the preferred imaging modality over transesophageal echography (TEE) for structural heart interventions. The existing commercial ICE catheters, however, offer a limited 2-D or 3-D field of view despite catheters utilizing large number of wires. In these catheters, each element in the ICE array is connected to the backend data-acquisition channel with a separate wire, which is a critical barrier for improving image quality and widening the field of view. In order to use ICE catheters under MRI instead of the ionizing X-ray radiation-based angiography, the number of interconnect wires in the catheter should be minimized to reduce RF-induced heating. Furthermore, reducing the number of wires improves the flexibility and lowers the cost of the single-use ICE catheters

    Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria)

    Get PDF
    Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (ßtubulin, ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent "robust" and "complex" clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils

    Calibration of myocardial T2 and T1 against iron concentration.

    Get PDF
    BACKGROUND: The assessment of myocardial iron using T2* cardiovascular magnetic resonance (CMR) has been validated and calibrated, and is in clinical use. However, there is very limited data assessing the relaxation parameters T1 and T2 for measurement of human myocardial iron. METHODS: Twelve hearts were examined from transfusion-dependent patients: 11 with end-stage heart failure, either following death (n=7) or cardiac transplantation (n=4), and 1 heart from a patient who died from a stroke with no cardiac iron loading. Ex-vivo R1 and R2 measurements (R1=1/T1 and R2=1/T2) at 1.5 Tesla were compared with myocardial iron concentration measured using inductively coupled plasma atomic emission spectroscopy. RESULTS: From a single myocardial slice in formalin which was repeatedly examined, a modest decrease in T2 was observed with time, from mean (± SD) 23.7 ± 0.93 ms at baseline (13 days after death and formalin fixation) to 18.5 ± 1.41 ms at day 566 (p<0.001). Raw T2 values were therefore adjusted to correct for this fall over time. Myocardial R2 was correlated with iron concentration [Fe] (R2 0.566, p<0.001), but the correlation was stronger between LnR2 and Ln[Fe] (R2 0.790, p<0.001). The relation was [Fe] = 5081•(T2)-2.22 between T2 (ms) and myocardial iron (mg/g dry weight). Analysis of T1 proved challenging with a dichotomous distribution of T1, with very short T1 (mean 72.3 ± 25.8 ms) that was independent of iron concentration in all hearts stored in formalin for greater than 12 months. In the remaining hearts stored for <10 weeks prior to scanning, LnR1 and iron concentration were correlated but with marked scatter (R2 0.517, p<0.001). A linear relationship was present between T1 and T2 in the hearts stored for a short period (R2 0.657, p<0.001). CONCLUSION: Myocardial T2 correlates well with myocardial iron concentration, which raises the possibility that T2 may provide additive information to T2* for patients with myocardial siderosis. However, ex-vivo T1 measurements are less reliable due to the severe chemical effects of formalin on T1 shortening, and therefore T1 calibration may only be practical from in-vivo human studies

    Prediction of 7-year psychopathology from mother-infant joint attention behaviours: a nested case–control study

    Get PDF
    &lt;br&gt;Background: To investigate whether later diagnosis of psychiatric disorder can be predicted from analysis of mother-infant joint attention (JA) behaviours in social-communicative interaction at 12 months.&lt;/br&gt; &lt;br&gt;Method: Using data from a large contemporary birth cohort, we examined 159 videos of a mother-infant interaction for joint attention behaviour when children were aged one year, sampled from within the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Fifty-three of the videos involved infants who were later considered to have a psychiatric disorder at seven years and 106 were same aged controls. Psychopathologies included in the case group were disruptive behaviour disorders, oppositional-conduct disorder, attention-deficit/hyperactivity disorder, pervasive development disorder, anxiety and depressive disorders. Psychiatric diagnoses were obtained using the Development and Wellbeing Assessment when the children were seven years old.&lt;/br&gt; &lt;br&gt;Results: None of the three JA behaviours (shared look rate, shared attention rate and shared attention intensity) showed a significant association with the primary outcome of case–control status. Only shared look rate predicted any of the exploratory sub-diagnosis outcomes and was found to be positively associated with later oppositional-conduct disorders (OR [95% CI]: 1.5 [1.0, 2.3]; p = 0.041).&lt;/br&gt;&lt;br&gt;Conclusions: JA behaviours did not, in general, predict later psychopathology. However, shared look was positively associated with later oppositional-conduct disorders. This suggests that some features of JA may be early markers of later psychopathology. Further investigation will be required to determine whether any JA behaviours can be used to screen for families in need of intervention.&lt;/br&gt

    Subtle oculomotor difficulties and their relation to motor skill in children with autism spectrum disorder

    Get PDF
    Objectives Sensorimotor difficulties are often reported in autism spectrum disorders (ASD). Visual and motor skills are linked in that the processing of visual information can help in guiding motor movements. The present study investigated oculomotor skill and its relation to general motor skill in ASD by providing a comprehensive assessment of oculomotor control. Methods Fifty children (25 ASD; 25 typically developing [TD]), aged 7–10 years, completed a motor assessment (comprising fine and gross motor tasks) and oculomotor battery (comprising fixation, smooth pursuit, prosaccade and antisaccade tasks). Results No group differences were found for antisaccade errors, nor saccade latencies in prosaccade and antisaccade tasks, but increased saccade amplitude variability was observed in children with ASD, suggesting a reduced consistency in saccade accuracy. Children with ASD also demonstrated poorer fixation stability than their peers and spent less time in pursuit of a moving target. Motor skill was not correlated with saccade amplitude variability. However, regression analyses revealed that motor skill (and not diagnosis) accounted for variance in fixation performance and fast smooth pursuit. Conclusions The findings highlight the importance of considering oculomotor paradigms to inform the functional impact of neuropathologies in ASD and also assessing the presentation of co-occurring difficulties to further our understanding of ASD. Avenues for future research are suggested
    corecore