11,055 research outputs found

    Growth mechanisms of perturbations in boundary layers over a compliant wall

    Full text link
    The temporal modal and nonmodal growth of three-dimensional perturbations in the boundary-layer flow over an infinite compliant flat wall is considered. Using a wall-normal velocity/wall-normal vorticity formalism, the dynamic boundary condition at the compliant wall admits a linear dependence on the eigenvalue parameter, as compared to a quadratic one in the canonical formulation of the problem. This greatly simplifies the accurate calculation of the continuous spectrum by means of a spectral method, thereby yielding a very effective filtering of the pseudospectra as well as a clear identification of instability regions. The regime of global instability is found to be matching the regime of the favorable phase of the forcing by the flow on the compliant wall so as to enhance the amplitude of the wall. An energy-budget analysis for the least-decaying hydroelastic (static-divergence, traveling-wave-flutter and near-stationary transitional) and Tollmien--Schlichting modes in the parameter space reveals the primary routes of energy flow. Moreover, the flow exhibits a slower transient growth for the maximum growth rate of a superposition of streamwise-independent modes due to a complex dependence of the wall-boundary condition with the Reynolds number. The initial and optimal perturbations are compared with the boundary-layer flow over a solid wall; differences and similarities are discussed. Unlike the solid-wall case, viscosity plays a pivotal role in the transient growth. A slowdown of the maximum growth rate with the Reynolds number is uncovered and found to originate in the transition of the fluid-solid interaction from a two-way to a one-way coupling. Finally, a term-by-term energy budget analysis is performed to identify the key contributors to the transient growth mechanism

    Spin transition in Gd3_3N@C80_{80}, detected by low-temperature on-chip SQUID technique

    Get PDF
    We present a magnetic study of the Gd3_3N@C80_{80} molecule, consisting of a Gd-trimer via a Nitrogen atom, encapsulated in a C80_{80} cage. This molecular system can be an efficient contrast agent for Magnetic Resonance Imaging (MRI) applications. We used a low-temperature technique able to detect small magnetic signals by placing the sample in the vicinity of an on-chip SQUID. The technique implemented at NHMFL has the particularity to operate in high magnetic fields of up to 7 T. The Gd3_3N@C80_{80} shows a paramagnetic behavior and we find a spin transition of the Gd3_3N structure at 1.2 K. We perform quantum mechanical simulations, which indicate that one of the Gd ions changes from a 8S7/2^8S_{7/2} state (L=0,S=7/2L=0, S=7/2) to a 7F6^7F_{6} state (L=S=3,J=6L=S=3, J=6), likely due to a charge transfer between the C80_{80} cage and the ion

    A wave driver theory for vortical waves propagating across junctions with application to those between rigid and compliant walls

    Get PDF
    A theory is described for propagation of vortical waves across alternate rigid and compliant panels. The structure in the fluid side at the junction of panels is a highly vortical narrow viscous structure which is idealized as a wave driver. The wave driver is modelled as a ‘half source cum half sink’. The incoming wave terminates into this structure and the outgoing wave emanates from it. The model is described by half Fourier–Laplace transforms respectively for the upstream and downstream sides of the junction. The cases below cutoff and above cutoff frequencies are studied. The theory completely reproduces the direct numerical simulation results of Davies & Carpenter (J. Fluid Mech., vol. 335, 1997, p. 361). Particularly, the jumps across the junction in the kinetic energy integral, the vorticity integral and other related quantities as obtained in the work of Davies & Carpenter are completely reproduced. Also, some important new concepts emerge, notable amongst which is the concept of the pseudo group velocity

    Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 4: IPAD system design

    Get PDF
    The computing system design of IPAD is described and the requirements which form the basis for the system design are discussed. The system is presented in terms of a functional design description and technical design specifications. The functional design specifications give the detailed description of the system design using top-down structured programming methodology. Human behavioral characteristics, which specify the system design at the user interface, security considerations, and standards for system design, implementation, and maintenance are also part of the technical design specifications. Detailed specifications of the two most common computing system types in use by the major aerospace companies which could support the IPAD system design are presented. The report of a study to investigate migration of IPAD software between the two candidate 3rd generation host computing systems and from these systems to a 4th generation system is included

    One parameter control of the size of iron oxide nanoparticles synthesized in reverse micelles

    Get PDF
    Iron oxide nanoparticles were synthesized via reverse micelle methods. The initial iron concentration was varied, while maintaining all other parameters constant, in order to investigate the effect of the iron concentration on the resultant iron oxide nanoparticle size. Increasing the iron concentration from 0.125M to 0.5M yielded an increase in average nanoparticle diameter from 4.71 to 7.95 nm, as measured by transmission electron microscopy. Three other concentrations between 0.125M and 0.5M showed corresponding size variations, all with statistical significance. Magnetic characterization by vibrating sample magnetometry and powder x-ray diffraction was performed to verify proper phase and material. Further insight into the reverse micelle method was acquired along with the ability to tune the nanoparticle size
    corecore